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1 Scope 
This Technical Guidance Document (TGD) 2f is a specific topic document on External Data and its Quality 

Assessment, and one of a series of information and guidance documents regarding Accuracy and 

Predicted Accuracy in the National System for Geospatial Intelligence (NSG).  As the title suggests, it 

focuses on methods, practices and applications for assessing the quality of External Data in the NSG within 

the context of a larger scope of work which includes a more generalized overview and additional topic 

specific technical guidance.  Documents in this series are listed below: 

TGD 1  Accuracy and Predicted Accuracy in the NSG:  Overview and Methodologies 

TGD 1-G Accuracy and Predicted Accuracy in the NSG: Glossary of Terms 

TGD 2a   Accuracy and Predicted Accuracy in the NSG: Predictive Statistics    

TGD 2b   Accuracy and Predicted Accuracy in the NSG: Sample Statistics    

TGD 2c   Accuracy and Predicted Accuracy in the NSG: Specification and Validation   

TGD 2d   Accuracy and Predicted Accuracy in the NSG: Estimators and their Quality Control  

TGD 2e   Accuracy and Predicted Accuracy in the NSG: Monte-Carlo Simulation   

TGD 2f   Accuracy and Predicted Accuracy in the NSG: External Data and its Quality Assessment 

All documents in the series, “Accuracy and Predicted Accuracy in the NSG”, are intended to provide 

technical guidance to inform the development of geospatial data accuracy characterization for NSG 

GEOINT collectors, producers and consumers -- accuracy characterization as required to describe the 

trustworthiness of geolocations for defense and intelligence use and to support practices that acquire, 

generate, process, exploit, and provide geolocation data and information based on geolocation data.  

Today, both the sources and desired uses for geospatial data are quickly expanding.  Throughout the NSG, 

trusted conveyance of geospatial accuracy is broadly required for a variety of traditional and evolving 

missions including those supported by manual, man-in-the-loop, and automated processes.  This guidance 

is the foundation layer for a collection of common techniques, methods, and algorithms ensuring that 

geospatial data within the NSG can be clearly requested, delivered and evaluated as fit for desired purpose 

whether by decision makers, intelligence analysts, or as input to further processing techniques.   

TGD 2f contains references to and is referenced by other Technical Guidance Documents.  The documents 

in this series, TGD 1, TGD 2a - TGD 2e, also have cross-references among themselves.  All Technical 

Guidance Documents also reference external public as well as “NGA approved for public release” 

documents for further insight/details.  While each individual document contains definitions for important 

relevant terms, TGD 1-G compiles all important terms and respective definitions of use particular to this 

series of documents to ensure continuity and provide ease of reference. 
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The TGD 2 documents, including this document focused on External Data and its Quality Assessment, are 

also considered somewhat top-level in that they are not directed at specific systems.  They do provide 

general guidance, technical insight, and recommended algorithms.  The relationship of the Technical 

Guidance Documents with specific GEOINT Standards documents and specific Program Requirements 

documents is presented in Figure 1-1, where arrows refer to references.  That is, in general, specific 

product requirement documents reference specific GEOINT standards documents which reference 

specific technical guidance documents. 

 

Figure 1-1: The relationships between the Technical Guidance Documents, GEOINT Standards 

Documents, and Program Requirement Documents 

Accuracy and Predicted Accuracy in the NSG: External Data and its Quality Assessment, Technical 

Guidance Document (TGD) 2f is for guidance only and cannot be cited as a requirement. 

2 Applicable Documents 
The documents listed below are not necessarily all of the documents referenced herein, but are those 

needed to understand the information provided by this information and guidance document. 

Specific NSG adopted 
GEOINT Standards 
for acquisition

Others
…

STANAG
…

TGD_1

TGD_2a TGD_2b TGD_2c TGD_2d TGD_2e TGD_2f

Technical Guidance Documents (TGD): Accuracy and Predicted Accuracy in the NSG

MIL-STD
…

NGA.STND.
…

Program 
Requirements 
Documents SOO

SOW
RFP
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2.1 Government specifications, standards, and handbooks 
NGA.SIG.0026.01_1.0_ACCOVER, Accuracy and Predicted Accuracy in the NSG:  Overview and 

Methodologies, Technical Guidance Document (TGD) 1 

NGA.SIG.0026.02_1.0_ACCGLOS, Accuracy and Predicted Accuracy in the NSG:  Glossary of Terms, 

Technical Guidance Document (TGD) 1-G 

NGA.SIG.0026.03_1.0_ACCPRED, Accuracy and Predicted Accuracy in the NSG:  Predictive Statistics, 

Technical Guidance Document (TGD) 2a 

NGA.SIG.0026.04_1.0_ACCSAMP, Accuracy and Predicted Accuracy in the NSG:  Sample Statistics, 

Technical Guidance Document (TGD) 2b    

NGA.SIG.0026.05_1.0_ACCSPEC, Accuracy and Predicted Accuracy in the NSG:  Specification and 

Validation, Technical Guidance Document (TGD) 2c 

NGA.SIG.0026.06_1.0_ ACCESQC, Accuracy and Predicted Accuracy in the NSG:  Estimators and their 

Quality Control (TGD) 2d 

NGA.SIG.0026.07_1.0_ACCMTCO, Accuracy and Predicted Accuracy in the NSG:  Monte-Carlo Simulation, 

Technical Guidance Document (TGD) 2e 
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3 Definitions 
There are a number of authoritative guides as well as existing standards within the NSG and Department 
of Defense for definitions of the identified key terms used in this technical guidance document.  In many 
cases, the existing definitions provided by these sources are either too general or, in some cases, too 
narrow or dated by intended purposes contemporary to the document's development and publication.  
The definitions provided in this document have been expanded and refined to explicitly address details 
relevant to the current and desired future use of accuracy in the NSG.  To acknowledge the basis and/or 
lineage of certain terms in Section 3.1, we reference the following sources considered as either 
foundational or contributory: 
 
[a] Anderson, James M. and Mikhail, E., Surveying: Theory and Practice, 7th Edition, WCB/McGraw-Hill, 

1998. 

[b] DMA-TR-8400.1, DMA Technical Report: Error Theory as Applied to Mapping, Charting, and Geodesy. 

[c] Defense Mapping Agency, Glossary of Mapping, Charting, and Geodetic Terms, 4th Edition, Defense 

Mapping Agency Hydrographic/Topographic Center, 1981. 

[d] ISO TC/211 211n2047, Text for ISO 19111 Geographic Information - Spatial referencing by coordinates, 

as sent to the ISO Central Secretariat for issuing as FDIS, July 17, 2006. 

[e] Joint Publication (JP) 1-02, Department of Defense Dictionary of Military and Associated Terms, 

November 8, 2010 as amended through January 15, 2016. 

[f] MIL-HDBK-850, Military Handbook: Glossary of Mapping, Charting, and Geodetic Terms, January 21, 

1994. 

[g] MIL-STD-2401, Department of Defense Standard Practice; Department of Defense World Geodetic 

System (WGS), January 11, 1994  

[h] MIL-STD-600001, Department of Defense Standard Practice; Mapping, Charting and Geodesy 

Accuracy, February 26, 1990. 

[i] National System for Geospatial Intelligence [Brochure] Public Release Case #15-489. 

[j] NGA.STND.0046_1.0, The Generic Point-cloud Model (GPM): Implementation and Exploitation, Version 

1.0, October 03, 2015. 

[k] Oxford Dictionaries (www.oxforddictionaries.com/us/) copyright © 2016 by Oxford University Press. 

[l] Soler, Tomas and Hothem, L., “Coordinate Systems Used in Geodesy: Basic Definitions and Concepts”, 
Journal of Surveying Engineering, Vol. 114, No. 2, May 1988. 
 

3.1 Key Terms Used in the Document  

3.1.1 Accuracy 

The range of values for the error in an object’s metric value with respect to an accepted reference value 

expressed as a probability.  See Appendix A for a more detailed and augmented definition. [f] 

http://www.oxforddictionaries.com/us/
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3.1.2 Accuracy Assessment Model 

A collection of sample statistics that, when populated, characterize the geolocation accuracy or sensor 

measurement accuracy of a specific data/product or a collection of data/products that correspond to the 

same type, such as an image/metadata or a geolocation product from a specific provider, date-range, etc. 

There are two categories of Accuracy Assessment Models: (1) Geolocation Product and (2) Geolocation 

Data.  The former corresponds to geolocation products per se, such as 3d Point Clouds, and the latter 

corresponds to geolocation data that can be used to generate geolocation products, such as an image and 

its metadata.  A populated Accuracy Assessment model is typically used for the population of a Predicted 

Accuracy Model. 

3.1.3 Commodities 

In the context of this document, data/products that can be obtained, typically through purchase, from a 

public source. 

3.1.4 Crowd-sourcing 

The process of obtaining data, in particular geospatial data, via individual contributions from a large group 

of people such as an online community, typically on a volunteered basis. 

3.1.5 Data/product realization 

A realization or instance of a data/product that corresponds to a specific and specified type of 

data/product that is geolocation-related, and is sometimes simply referred to as a data/product.   The 

type of data/product typically corresponds to External Data relative to the NSG, and its Quality 

Assessment is of particular interest.  The combination of both “data” and “product” in the term 

“data/product” corresponds to either a geolocation product, such as a 3d Point Cloud, or to data, such as 

an image and its metadata, from which geolocations may be computed.   

 An example of a relevant type of data/product are 3d Point Clouds from a specified provider, 

generated within a specified date-range, and using a specified underlying data/generation 

technique, such as LIDAR.   

 A data/product realization can be further subcategorized as arbitrary or specific, the latter 

corresponding to a specific data/product that was already generated and available. 

3.1.6 Empirical Quality Model 

A combination of accuracy assessment and predicted accuracy for a Crowd-sourced geolocation-related 

data/product. 

3.1.7 Error 

The difference between the observed or estimated value and its ideal or true value.   See Appendix A for 

a more detailed and augmented definition. [f] 
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3.1.8 External Data 

In the context of this document, External Data is geospatial data that is obtained by purchase or openly 

available public sources.  Outsourced data, Commodities data, and crowd-sourced data are examples of 

External Data. 

3.1.9 Ground Truth 

The reference or (assumed) true value of a geolocation of a measured quantity (e.g. associated with an 

absolute geolocation, or a relative mensuration). 

3.1.10 Metadata 

Higher level or ancillary data describing a collection of data, e.g., the sensor support data corresponding 

to an image, which specifies corresponding sensor position, attitude, interior orientation parameters, etc. 

3.1.11 Mixed Gaussian Random Field (MGRF) 

An MGRF is the core component of a predicted accuracy model for Commodities-based geolocation 

products, such as 3d Point Clouds.  It provides for the predicted accuracy for each geolocation in the 

product in a rigorous yet practical manner requiring a relatively small amount of corresponding metadata 

or its equivalent.  It also allows for variation of predicted accuracy across various portions of the product. 

An MGRF consists of a collection or “mixture” of specified Gaussian distributed random fields, their 

defining predictive statistics, a subcategorization or mapping of the random fields to different partitions 

across the product, and the approximate a priori probability of the partitions that sum to 1.  Partitions are 

defined by textual description.  MGRF content allows for the rigorous computation of the predicted 

accuracy for a geolocation either known to correspond to a particular partition or to an unknown or 

arbitrary partition. 

3.1.12 National System for Geospatial Intelligence (NSG) 

The operating framework supported by producers, consumers or influencers of geospatial intelligence 

(GEOINT).  Spanning defense, intelligence, civil, commercial, academic and international sectors, the NSG 

contributes to the overall advancement of the GEOINT function within the strategic priorities identified 

by the Functional Manager for Geospatial Intelligence in the role established by Executive Order 12333.  

The framework facilitates community strategy, policy, governance, standards and requirements to ensure 

responsive, integrated national security capabilities. [i] 

3.1.13 Outsourced Data 

Data obtained through purchase (contract) which may be contingent on specified collection or production 

criteria. 

3.1.14 Predicted Accuracy 

The range of values for the error in a specific object’s metric value expressed as a probability derived from 

an underlying and accompanying detailed statistical error model.   See Appendix A for a more detailed 

and augmented definition. 
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3.1.15 Predicted Accuracy Model 

A collection of predictive statistics that characterize the geolocation accuracy or related sensor 

measurement accuracy in an arbitrary data/product of a specified type.  When a populated Predicted 

Accuracy Model is assigned to a specific data/product, it becomes its predicted accuracy.   

There are two categories of Predicted Accuracy Models: (1) Geolocation Product and (2) Geolocation Data, 

the latter subcategorized by sensor-space and measurement-space.  A Predicted Accuracy Model is 

typically populated based on a corresponding populated accuracy assessment model. 

3.1.16 Predictive Statistics 

Statistics corresponding to the mathematical modeling of assumed a priori error characteristics contained 

in a statistical error model. 

3.1.17 Quality Assurance 

The maintenance of a desired level of quality in a service or product, especially by means of attention to 

every stage of the process of delivery or production. [k] 

3.1.18 Quality Assessment  

Processes and procedures intended to verify the reliability of provided data and processes, typically 

performed independent of collection or production.   For example, if ground truth is available, then 

comparison of actual (sample) errors to predicted errors (statistical values via rigorous error propagation) 

is a key part of this process. 

3.1.19 Sample Statistics 

Statistics corresponding to the analysis of a collection of physical observations, a sample of the population, 

as compared to an assumed true or an a priori value. 

3.1.20 Sensor Model 

A sensor model for a data/product provides the ground-to-data/product relationship or correspondence.  

For example, if the data/product is an image, it provides the ground-to-image correspondence: given a 3d 

ground location input, it outputs the corresponding image location or coordinate.  This correspondence is 

a mathematical function, such as a ground-to-image polynomial which is also invertible, i.e., given an 

image location and an assumed elevation, it provides the corresponding horizontal ground location 

assuming representation of geolocations in a Local Tangent Plane Coordinate System.   

 

The above sensor model is a “basic sensor model”.  When adjustable parameters are included that 

represent errors in the sensor model due to underlying data/product metadata (e.g. sensor pose) as well 

as the a priori predicted accuracy corresponding to those errors, the sensor model is termed a “complete 

sensor model”.  When its adjustable parameters explicitly correspond to physical parameters associated 

with the sensor and its metadata, the sensor model is termed a “complete physical” sensor model.   

 

A complete sensor model is typically and simply termed a sensor model.   If a sensor model is not 

complete, it is termed a basic sensor model. 

 

http://www.oxforddictionaries.com/us/definition/american_english/maintenance#maintenance__2
http://www.oxforddictionaries.com/us/definition/american_english/desire#desire__7
http://www.oxforddictionaries.com/us/definition/american_english/delivery#delivery__2
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A Community Sensor Model (CSM) is a particular API for a sensor model and its associated functionality. 

3.1.21 Scalar Accuracy Metrics 

Convenient one-number summaries of geolocation accuracy and geolocation predicted accuracy 

expressed as a probability: (1) Linear Error (LE) corresponds to 90% probable vertical error, (2) Circular 

Error (CE) correspond to 90% probable horizontal radial error, and (3) Spherical Error (SE) corresponds to 

90% spherical radial error.  See Appendix A for a more detailed and augmented definition. [b], [f], [h] 

3.1.22 Quality Assessment Summary 

A file/report summarizing the Quality Assessment results for a specific type of geolocation-related 

data/product. 

3.2 Other Relevant Terms 
Appendix A contains definitions of the following additional terms relevant to the content of this 

document: 

 A priori  

 A posteriori  

 Absolute Horizontal Accuracy 

 Absolute Vertical Accuracy 

 Accuracy (augmented definition) 

 Bias Error  

 CE-LE Error Cylinder 

 Circular Error (CE) 

 Confidence Ellipsoid 

 Confidence Interval 

 Correlated Error  

 Correlated Values 

 Covariance 

 Cross-covariance Matrix 

 Degree of freedom 

 Deterministic Error 

 Elevation 

 Error (augmented definition) 

 Fusion 

 Linear Error (LE) 

 Local Tangent Plane Coordinate System  

 Mean-Value 

 Monte-Carlo Simulation 

 Multi-Image Geopositioning (MIG) 

 Multi-State Vector Error Covariance 

Matrix 

 Predicted Accuracy (Augmented 

definition) 

 Principal Matrix Square Root 

 Probability density function 

 Probability distribution 

 Probability distribution function (cdf) 

 Radial Error 

 Random Error 

 Radom variable 

 Random Error Vector 

 Random Field  

 Random Variable 

 Random Vector  

 Realization 

 Relative Horizontal Accuracy 

 Relative Vertical Accuracy 

 Scalar Accuracy Metrics (augmented 

definition) 

 Spatial Correlation 

 Spherical Error (SE) 

 Standard Deviation 

 State Vector 

 State Vector Error 

 Statistical Error Model 

 Stochastic Process  
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 Strictly positive definite correlation 

function (spdcf) 

 Temporal Correlation 

 Uncorrelated Error 

 Variance 

 

 

3.3 Abbreviations and Acronyms 
Abbreviation/Acronym Definition 

1d One dimension 

2d Two dimensions 

3d  Three dimensions 

AOI Area of Interest 

API Application Program Interface 

cdf cumulative (probability) distribution function 

CE Circular error 

DEM Digital Elevation Model 

dof Degrees of freedom 

DSM Digital Surface Model 

EO Electro-optical 

FMV Full Motion Video 

GEOINT Geospatial Intelligence 

GPM Generic Point-Cloud Model 

LIDAR Light Detection and Ranging 

LOS Line-of-sight 

MIG Multi-Image geopositioning 

NSG National System for Geospatial Intelligence 

pdf probability density function 

QA Quality assurance 

QC Quality control 

RPC Rational Polynomial Coefficient sensor model 
RSM Replacement Sensor Model 

s/w Software or “code” 

TGD  Technical Guidance Document 

WLS Weighted Least Squares 
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4 Introduction to External Data and its Quality Assessment in the NSG 
This document presents an overview and detailed recommendations for External Data and its Quality 

Assessment in the NSG, and is part of the Technical Guidance Document (TGD) series, Accuracy and 

Predicted Accuracy in the NSG.  It references other documents in this series where appropriate. 

The NSG is becoming increasingly more reliant on External Data: ranging from “semi-external” outsourcing 

of tasks, to Commodities and Crowd-sourcing data.  For the latter two, assessing accuracy and quality 

(reliability) is and will continue to be challenging, as detailed metadata and pedigree may be nil or 

unreliable, particularly so for Crowd-sourcing data.  Outsourced data is usually generated against an NSG-

supplied specification of performance requirements.  The challenge is to continuously ensure, as best as 

possible, that the product requirements are being met without formal and expensive (re)testing.   

Figure 4-1 is a graphical depiction of the overall process of accuracy and Quality Assessment of External 

Data in the NSG. This overall process is addressed in this document, but is limited to “geolocation” 

data/products and corresponding quality and geolocation accuracy. 

 

 
Figure 4-1: Functional flow of External Data into the NSG 

4.1 Outsourcing 
For outsourcing, some Quality Assurance (QA), as opposed to simply Quality Assessment, of the 

outsourced product is typically built-in to the requirements for the particular outsourcing contract.  

However, the “tasking” module within the NSG would like more confidence regarding the Quality 

Assessment

Out-sourced
Collection, 

Services, and 
Products

Crowd
Sourcing

Commodities

Tasking

Requirements

Data Data 

Data 
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Assurance (QA) and corresponding Quality Control (QC) for each specific product delivered without the 

expense and delay of detailed testing on a per product-delivery basis.  A recommended approach is to 

include in the requirements that the data for internal QC checks be delivered by the contractor along with 

the nominal product, so as to ensure that these checks were indeed performed by the contractor (or at 

least the required internal metrics were generated).  In addition, the NSG tasking module can review these 

results with appropriate feedback to the contractor, if necessary.   

Of course, the specific QA/QC internal metrics vary with the type of outsourced product.  As an example, 

for an outsourced image registration task involving a large number of overlapping images (aka 

“triangulation” or “bundle adjustment”), internal metrics could include detailed shear statistics (not just 

a one or two number summary per stereo model), detailed y-parallax statistics, number and distribution 

of tie points used, and various (WLS batch) estimator internal performance metrics, such as the 

measurement residual Chi-Square value, values of the various parameter corrections normalized by their 

a priori error covariance, internal measurement editing results, etc.  These types of metrics can ensure 

that the solution is at least internally consistent.  See TGD 2d (Estimators and their Quality Control) and 

its “easy-to-read” summary [5] for additional details. 

Both the generation of requirements for contractor-generated QC metrics and the operational review of 

corresponding populated metrics by the tasking module is recommended to be performed on a per-NSG 

organization basis, i.e., implemented by each organization that performs outsourcing.  Further details are 

not in the charter of this document, and correspondingly, Outsourcing is not discussed further in this 

document. 

4.2 Quality Assessment 
The Quality Assessment of externally generated data, such as Commodities and Crowd-sourcing data, is 

more difficult, as the NSG has virtually no control of the data generation and its internal QA processes, if 

any.  In addition, the range of data is virtually unlimited, and includes: (1) Small-Sat imagery, (2) 3d Point 

Clouds, and (3) Crowd-sourcing Digital Maps, for example.  A recommended top-level approach to NSG 

Quality Assessment is presented in Figure 4.2-1: 
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Figure 4.2-1: Recommended top-level approach to NSG Quality Assessment of External Data 

The above reflects population of a different set of models depending on whether the External Data 

corresponds to Commodities data or to Crowd-sourcing data.  This is due to the latter’s extreme lack of 

pedigree, wide variations in quality over specific data/products, and propensity for data/products to be 

both incomplete and contain blunders.  Therefore, details regarding quality in general are of more concern 

for Crowd-sourcing data/products than are relatively high-fidelity assessments and predictions regarding 

geolocation accuracy per se; hence, population of empirical quality models are performed for Crowd-

sourcing data instead of population of accuracy assessment and predicted accuracy models performed 

for Commodities data. 

 

As detailed later in this document and relevant to Commodities data, populated accuracy assessment 

models are based on sample statistics of geolocation error from specific data/products.  The samples of 

geolocation error are based on comparisons of the data/product to overlapping ground truth.   
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Populated predicted accuracy models contain predictive statistics of error applicable to arbitrary 

data/products from a specified type or class of data/product.  They are typically initialized and 

subsequently “tuned” using populated accuracy assessment models corresponding to the same specified 

type or class of data/product.  For example, EO-generated 3d Point Clouds from vendor “abc”, in date-

range “123”, etc. 

 

The sample statistics contained in a populated empirical quality model for Crowd-sourcing data may 

include sample/predictive statistics of geolocation error (typically of lessor fidelity due to the non-

availability of accurate ground truth), but also include sample statistics concerning completeness of data, 

blunders, etc.  The sample statistics are typically based on comparisons of overlapping data/products (e.g., 

digital maps) between multiple collectors, such as OpenStreetMap, Wikimapia, Google MyMaps, etc.   A 

populated empirical quality model corresponds to a specified type or class of Crowd-sourcing data. 

The general task of Quality Assessment and accuracy prediction of External Data used by the NSG requires 

additional applied research.  However, what we currently “know”, related issues, and what we 

recommend are detailed in Section 5 of this document.  As these recommendations are implemented and 

more experience and knowledge gained throughout the NSG, these recommendations will be modified 

accordingly.  A guide to Section 5 of the document is presented in Section 4.3 below.   

4.3 Intended Audience and Detailed Guide to the Document 
This section of the document presents various guides and related information regarding the remainder of 

the document: 

4.3.1 Intended Audience 

The topics addressed in the remainder of this document include the following and their intended 

audience:  

1. The management of Quality Assessment in the NSG by a central organization and/or individual 

organizations in the NSG 

a. Intended audience includes:  

i. Managers, technical managers, and/or operational managers 

ii. Developers of corresponding top-level functionality (s/w engineers) 

2. The assessment of the accuracy of a specific type or class of geolocation product (e.g., 3d Point Cloud) 

or geolocation data (e.g. image) and the population of a corresponding predicted accuracy model  

a. Intended audience: individual or small groups of scientists, analysts, and/or developers 

3. The optimal use of the geolocation data/product based on a populated predicted accuracy model 

a. Intended audience: the previous audience plus “down-stream” users/applications 

The above addresses External Data – Commodities as well as Crowd-sourcing.  The above topics and the 

development of corresponding capabilities are intended to “flow-down” in numerical order, i.e., from 1 

to 3.  However, if need be, topics 2 and 3 can be carried out independent of topic 1 but on a necessarily 

smaller scale. 
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4.3.2 Overall Guide 

Table 4.3.2-1 presents an overall guide to this document.  In particular, Section 5 which addresses Quality 

Assessment, and more specifically, the reliability and geolocation accuracy of geolocation data and 

products.  Section 6 and Section 7 are also included, which contain notes and references, respectively. 

Table 4.3.2-1: Overall guide to sections 

 

As a reminder, and as stated previously at the end of Section 4.1, Outsourcing is not discussed further in 

this document consistent with the document’s charter.  Only details of Quality Assessment are applicable 

and discussed further per the above guide to the document. 

In addition, a number of appendices are also available containing supporting details and summarized in 

Table 4.3.2-2: 

 

Section abbreviated Comments

title

Section 4 Overview of External Data assumed already read

and its Quality Assessment

Section 5: Methodology and overall title to the following:

Algorithms

Section 5.1 Quality Assessment  presents an overview of Quality Assessment

Overview

Section 5.2 Quality Assessment describes the Quality Assessment Management 

Management function

Section 5.3 Quality Assessment describes the Quality Assessment Analysis function

Analysis details models for population:

Accuracy Assessment, Predicted Accuracy, and

Empirical Quality;

describes population of models and applications

Section 5.4 Summary key "takeaways"

recommended applied research

Section 6 Notes

Section 7 References
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Table 4.3.2-2: Overall guide to appendices 

 

4.3.3 Practical Guide 

The following presents practical guides to this document per the readers’ assumed general interests: 

Managers, Technical Managers, and Operational Managers: 

Table 4.3.3-1 presents an outline of all of the sections in this document recommended to managers or 

those less interested in technical details (subsections appended with * are recommended as optional): 

 

Appendix abbreviated Comments

title

A Additional terms and Subset of glossary

definitions

B Geolocation Product Details the population of accuracy assessment

Accuracy Models - the basics and predicted accuracy models and their use

for Geolocation Products (e.g., 3d Point Clouds)

C Geolocation Data Details the population of accuracy assessment

Accuracy Models - the basics and predicted accuracy models and their use for

Geolocation Data (e.g., images and their metadata)

D Adjustment of Details the adjustment of geolocation data (an image

Geolocation Data and its metadata) for improved accuracy based 

on a a populated predicted accuracy model and

control information (e.g. ground control points)

E MGRF representation and Details a Mixed Gaussian Random Field (MGRF) 

adjustment of Geolocation as an optional but  recommended  core component of

Products a predicted accuracy model for Geolocation Products

(e.g., 3d Point Clouds); also details adjustment

of Geolcation Products for improved accuracy

F Pseudo-code for MGRF Pseudo-code for the computataion of MGRF

predictive statistics and correponding metadata

G MGRF partitions Descriptions of MGRF "anomalous" partitions;

e.g., "melted roof-top edges"

H Ground truth alternate Alternate methods for the generation of ground truth

generation
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Table 4.3.3-1:  Practical Guide for Operations and Technical Managers (* optional) 

 

Scientists, Analysts, Developers and others interested in technical details:  

For those readers interested in technical and development details, the entire main body of the document 

is recommended and those Appendices (or their subsections) as referenced therein and per the reader’s 

specific interests (see Tables 4.3.2-1 and 4.3.2-2).   Those interested in technical and development details 

may include “down-stream” users of geospatial data/products and the developers of corresponding 

applications.   

Recommended abbreviated Recommended abbreviated

Section title Subsections titles

Section 4 Overview of all of its subsections; …

External Data and its assumed already read

Quality Assessment

Section 5.1 Quality Assessment all of its subsections …

Overview

Section 5.2 Quality Assessment all of its subsections …

Management

Section 5.3 Quality Assessment following subsections:

Analysis                    5.3.1 Accuracy and Pred Accuracy

Models and Interrelationships

for Commodities Data

                          5.3.1.1 relationship to sensor model

                          5.3.1.2 importance of pred acc model

                  5.3.5* Analysis Techniques

                          5.3.5.1* ground truth

                          5.3.5.2* sample error statistics

                          5.3.5.3* real-world example

                  5.3.6 Emperical Quality Model 

for Crowd-Sourcing Data

Section 5.4 Summary subsections:

                 5.4.1 Key "takeways"

  5.4.2 Recommended Applied

Research
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4.3.4 Top-level terminology and what the document does not address 

Finally, as reflected in the above guides, the charter of this document is the Quality Assessment of 

geospatial information, and primarily geolocation information.  For example, and in reference to 

“geolocation” information versus the more general term “geospatial” information:  

 “geolocation” information: 

o The geolocations (points) and their accuracy and predicted accuracy in a 3d Point Cloud 

correspond to “geolocation” information in a geolocation product.  

o The image locations (line,sample) and their accuracy and predicted accuracy in an image 

correspond to “geolocation” information in geolocation data.   

 This data can be subsequently used for the generation of geolocations per se and 

for the corresponding propagation of predicted accuracy to ground-space.   

 Corresponding image locations are considered measurements into this 

generation process and their errors are considered measurement errors. 

 Image location errors primarily correspond to the effects of image metadata 

errors, such as errors in underlying sensor pose, etc. 

 “geospatial” information: 

o Various geolocations associated with features as represented by a digital map provided 

by Crowd-sourcing, bounds on their accuracy and predicted accuracy, and the percent of 

missing features together correspond to “geospatial” information in a geolocation 

data/product.   

 As in practice, the terms “geospatial” and “geolocation” are used somewhat interchangeably 

throughout the document.   

The term “geolocation product” corresponds to a product per se, such as a 3d Point Cloud.  The term 

“geolocation data” corresponds to data that is related to geolocations, such as an image and its metadata.  

The image includes a set of image locations. 

The term “geolocation data/product” is used to represent either geolocation data or geolocation 

products, and is also frequently termed “data/products” throughout this document, or more specifically, 

“data” or “products”, as is warranted – the descriptor “geolocation” is implied.  Thus, an image is data, a 

3d Point Cloud is a product, and when either is applicable, a data/product.  A digital map provided by 

Crowd-sourcing is termed a data/product as it is considered somewhat of a hybrid between data and 

product. 

The charter of this document does not include: 

 Accuracy and predicted accuracy for a general feature considered as a whole, i.e., as a collection 

of nodes (geolocations), edges, etc. considered together as one entity.    

o Corresponding errors include a combination of geolocation errors corresponding to the 

various nodes (points), interpolation errors for arbitrary geolocation along the edges 

between nodes, etc.    
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o Summary accuracy and predicted accuracy metrics for a feature and its possible 

attributes are defined and populated based on the underlying core principles and 

techniques presented in this document, including the spatial correlation of errors. 

 Accuracy and predicted accuracy metrics in reference to errors in: 

 computed feature attributes such as centroids, areas, and volumes 

 an arbitrary point’s location along a building’s horizontal base or polygon 

 Future applied research is recommended for their development per Section 5.4.2 

 Quality Assessment of predictive analytics  

o A corresponding future technical document is recommended 

 

5 Methodology and Algorithms for External Data and its Quality 

Assessment 

5.1 Quality Assessment Overview 
It is recommended that Quality Assessment be “managed” by one government organization in the NSG 

with inputs/outputs to other organizations in the NSG.  It is not the charter of this document to 

recommend a specific organization, but the organization should have consistent funding in support of this 

task.  If no such organization accepts this task, each NSG organization should have its own “management” 

function for assessment.  However, this is not ideal or efficient, and the sharing of information between 

organizations will be more ad hoc and possibly lead to incomplete and/or inconsistent assessments. 

Quality Assessment compiles information on the quality of various geospatial data and products, 

categorized by type of data/product, including generating organization/vendor or provider.  It is 

recommended that the assessment consist of four types of information: (1) top-level Quality Assessment 

summary, (2) accuracy assessment, (3) predicted accuracy, and (4) detailed empirical quality.    The top-

level Quality Assessment summary is primarily qualitative as opposed to quantitative, and consists of a 

textual overview of the data or product and its general quality or reliability.  The accuracy assessment and 

predicted accuracy are applicable to Commodities data and its corresponding geolocation accuracy.  

Detailed empirical quality is applicable to Crowd-sourcing data and its corresponding coverage, 

completeness, blunders, as well as low-fidelity estimates or bounds on its geolocation accuracy.   

Figure 5.1-1 presents a summary of the correspondence between the types of External Data to the 

corresponding types of information used to represent their quality.  In general, the overall amount of 

collective information “grows” as Quality Assessment is continuously performed in the NSG.   
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Figure 5.1-1: External Data-to-Information correspondence 

Both accuracy assessment and predicted accuracy concern geolocation accuracy, either directly as in a 3d 

geolocation product, or indirectly as in the accuracy in geolocation data, such as an image and its metadata 

with corresponding image locations (pixels) that correspond to sensor measurements related to 

geolocations.   

Both accuracy assessment and predicted accuracy are actually populated models, i.e., a populated 

accuracy assessment model and a populated predicted accuracy model, respectively, as detailed in 

Sections 5.3.1-5.3.3.  Predicted accuracy is typically “tuned” using corresponding accuracy assessments 

consisting of sample statistics of geolocation error for the same type or class of data/product.  Use of the 

subsequent populated predicted accuracy model enables optimal and informed exploitation of the 

corresponding data/product.  In addition, even though the accuracy assessment model and the predicted 

accuracy model are applicable to Commodities data, they can also be applied to NSG-internally generated 

data/products when applicable. 

A populated accuracy assessment model is based on and applicable to at least one and typically many past 

realizations or specific instances of the data/product from the same type or class of data/product, 

whereas a populated predicted accuracy model is applicable to an arbitrary realization or instance of the 

same type or class of data/product.  The contents of the populated predicted accuracy model are 

predictive statistics that were typically initialized and/or “tuned” based on the sample statistics contained 

in the corresponding populated accuracy assessment model.  The contents of the populated predicted 

accuracy model are recommended for inclusion in accompanying metadata or its equivalent when a 

data/product is made available to the user community by its provider, or thereafter, if necessary, at which 

time it becomes the predicted accuracy of a specific data/product.   
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Empirical quality is a combination of assessment and prediction regarding the quality of data/products 

generated by Crowd-sourcing.  Empirical quality is actually conveyed as a populated empirical quality 

model for each general type or class of Crowd-sourcing data/product of interest, as detailed in Section 

5.3.6. 

The difference between one of the above models and a corresponding populated model is as follows: the 

model defines applicable statistics and related data, whereas the populated model includes their 

corresponding values.  In addition, see Section 3.1 for more formal definitions of the various models as 

well as the definition of a data/product and its realization. 

The host organization in charge of the management of the Quality Assessment task implements the 

Quality Assessment Management function described in Section 5.2 which is supported by the Quality 

Assessment Analysis function described in Section 5.3. 

5.1.1 Examples of External Data 

Prior to presenting further details, some examples of External Data are presented below as a further 

introduction as well as to illustrate the wide-range of corresponding data/products. 

5.1.1.1 Small-Sat Imagery 

Figure 5.1.1.1-1 illustrates a Planet Dove Small-Sat and Figure 5.1.1.1-2 a corresponding image – a 

representative example of Commodities data.   

 

Figure 5.1.1.1-1: One of approximately 200 Planet Dove Small-Sats; 3-5 m ground-sample distance [1]; 

additional permission to use via “Source:@Year, Planet Labs Inc, Contract HM0476-18-C-0044” 
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Figure 5.1.1.1-2: Planet Dove Image of El-Alamein Egypt, Aug 28. 2016; from Planet Lab’s web-site [17]; 

permission to use via “Source:@Year, Planet Labs Inc, Contract HM0476-18-C-0044” 

In general, a single image and its metadata (sensor pose, etc. or a ground-to-image polynomial) allow for 

the extraction of 3d geolocations given an external elevation, such as a DEM.  However, even if an image 

looks “sharp”, this does not imply that the extraction of an arbitrary geolocation of a feature of interest 

in the image is accurate nor does it imply that there is a reasonable estimate of the accuracy available.   

In addition, both absolute accuracy and relative accuracy are of interest.  Typically, even if geolocation 

error is large corresponding to an arbitrary geolocation of interest identified and measured in the image, 

when that geolocation is differenced with another geolocation identified and measured in the same 

image, the error in their difference is typically small, such as is applicable when measuring the length of a 

feature such as an airport runway.  The two corresponding geolocation errors are positively correlated 

and their common error cancels when the geolocations are differenced – the remaining or residual error 

corresponds to their relative error; hence, corresponding relative accuracy is typically better than absolute 

accuracy, at least for relatively short distances between the two geolocations.   

All of the above issues are relevant to this document; in particular, the characterization and prediction of 

both geolocation accuracy and relative accuracy given little if any corresponding information from the 

image provider, as typically the case with Small-Sat imagery. 
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5.1.1.2 3d Point Clouds 

Figures 5.1.1.2-1 illustrates a 3d Point Cloud – a representative example of Commodities data.  An 

individual element in the EO-derived Point Cloud corresponds to a dot in the figure and to a specific 3d 

geolocation.   

 

Figure 5.1.1.2-1: A portion of a 3d Point Cloud of an urban scene at a specific viewing orientation and 

zoom-factor; color-coded based on height; generated using aerial imagery from the National Agriculture 

Imagery Program (NAIP); public domain. 

In general, geolocation accuracy degrades to varying degrees at building roof-top edges in an EO-derived 

Point Cloud, corresponding to “melted” roof-top edges (see Appendix G).  This particular example is 

reasonably “well-behaved” regarding roof-top-edges; in general, a function of both the generation 

algorithm and the imaging geometry of the multiple images that are used to generated the Point Cloud.  

Multiple images with varied imaging geometry are required in order to provide “stereo” or 3d geolocation 

information. 

 

Again, this document is interested in the characterization and prediction of both absolute and relative 

accuracy of 3d geolocations in the Point Cloud with little if any corresponding information from the 

provider.  This time, the 3d geolocations of interest are explicitly in the data/product and correspond to 

each point or “dot” as opposed to being computed from an image and its metadata as in the Small-Sat 

example.  
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Figure 5.1.1.2-2 presents an example of a 3d Point Cloud derived using LIDAR instead of EO imagery; in 

particular, using Geiger-mode LIDAR.  It is an example of a very high resolution product.   

 

 
Figure 5.1.1.2-2: A portion of a 3d Point Cloud of an urban scene (utilities) at a specified viewing 

orientation and zoom-factor; color-coded based on height and intensity; Harris Geiger-mode LIDAR, 

permission for use courtesy of Harris Corporation 

In general, LIDAR-derived 3d Point Clouds are significantly more accurate than EO-derived 3d Point Clouds, 

although corresponding predictions of accuracy and relative accuracy are typically not provided with 

products from most providers.  However, “melted” roof-top edges are typically no longer an issue; that 

is, accuracy is typically reasonably uniform across the product.  This is illustrated in the above figure. 

5.1.1.3 Crowd-sourcing Digital Maps 

Figure 5.1.1.3-1 presents an example of a Crowd-sourcing data/product – a Digital Map from the 

OpenStreetMap provider.  It corresponds to a region in Nepal and was generated using the publicly 

available OpenStreetMap service for a user-specified location and specified Area-of-Interest (AOI) or 

scale.  It corresponds to a standard map format, without the optional overlay over imagery that was also 

available and without the optional printout of various keys defining annotations.   
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Figure 5.1.1.3-1: A Crowd-sourcing Digital Map via OpenStreetMap (05 July 2018) with a general-use 

license; an approximately 60 square mile AOI and 15 miles from downtown Kathmandu, Nepal 

The Digital Map appears of reasonable quality, although we do not know: (1) its geolocation accuracy, (2) 

whether or not it contains all relevant features and annotations, and (3) whether or not it contains any 

blunders or mis-information.  This is a general problem regarding the use of Crowd-sourcing data.  One 

approach for its mitigation is the comparison of different maps from different providers over the same 

AOI.   

However, it is also worth pointing out that Crowd-sourcing Digital Maps can be of real value in the NSG, 

particularly when there are no reliable standard maps of known quality over the AOI that are both 

available and reasonably current.  For example, Crowd-sourcing Digital Maps can be invaluable during 

humanitarian crises with frequent updates by volunteers over the AOI. 

5.2 Quality Assessment Management Function 
The Quality Assessment Management function performs the following tasks, and is assumed implemented 

by the “host” NSG organization per the Section 5.1 discussion: 

1) Receive inputs from various NSG organizations corresponding to a subset of the following: 

a. “raw” data and products 

b. Populated accuracy assessment models 

c. Populated predicted accuracy models 

d. Populated empirical quality models 

2) Generate a subset of the following based on the “host” organization’s independent access to 

“raw” data and products: 
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a. Populated accuracy assessment models 

b. Populated predicted accuracy models 

c. Populated empirical quality models 

3) Compile, collate, integrate all of the above and compute corresponding Quality Assessment 

Summaries 

4) Generate an explicit, combined, and latest overall Quality Assessment Summary, populated 

accuracy assessment model, populated predicted accuracy model, and populated empirical 

quality model for each applicable type or class (category) of geospatial data/product when 

possible 

a. Include a dated history and access to (1) and (2) used to perform (3) and (4) 

5) Provide access to all of the above to all appropriate organizations/personnel across the NSG. 

In summary, the corresponding top-level charter of the Quality Assessment Management function is to 

provide “One-stop shopping” for the best, latest, and consistent information regarding the quality, 

geospatial accuracy, and geospatial predicted accuracy corresponding to the various External Data 

(geospatial data and products) used across the NSG. 

Further details and recommendations per subsection 

The following subsections go on to provide further details and recommendations regarding the Quality 

Assessment Management function: 

 Section 5.2.1 details the content of the top-level Quality Assessment Summary (file/report); its 

subsections discuss: 

o The predicted accuracy summary metrics 

o The data/product reliability metric 

 Section 5.2.2 cautions that Quality Assessment for some data/products may take a long time to 

complete 

 Section 5.2.3 discusses exceptions – some data/products require minimal Quality Assessment as 

reliable predicted accuracy models are already available from the vendor/provider; its 

subsections discuss: 

o Specific examples 

o Common characteristic 

 Section 5.2.4 discusses the encouragement for and potential future availability of data/product 

accuracy specifications from the provider; its subsections discuss related issues: 

o  verification of any “advertised” accuracies from the vendor/provider 

o the need to specify and validate the accuracy of geolocation extraction tools  

 Section 5.2.5 presents the top-level functional flow of the Quality Assessment Management 

function and its relationship with the Quality Assessment Analysis function. 

Details regarding the specific implementation of the Quality Assessment Management function by the 

NSG “host” organization are not within the charter of this document.    
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5.2.1 Quality Assessment Summary file/report 

A Quality Assessment Summary (file/report) is recommended for generation by the Quality Assessment 

Management function for each type or class of data/product of interest.  It contains a general and 

primarily textual summary of the data/product as well as recommendations for its use or non-use based 

on the contents of populated accuracy assessment, predicted accuracy, and/or empirical quality models 

generated by the Quality Assessment Analysis function.  The recommended content of the top-level 

Quality Assessment Summary is presented in Table 5.2.1-1. 

Table 5.2.1-1: Quality Assessment Summary – recommended content (Part 1) 

 

 
 

 Textual overview of data/product and its generation: 

o Data/product type 

 E.g., Small-Sat imagery/metadata, Digital Map: Crowd-Sourcing, 

etc. 

o Provider 

 E.g., specific NSG organization, commercial vendor, Crowd-

Sourcing provider, etc.  

 Links, if available 

o Applicable sensors and related generation overview 

o Date range 

o Geographic range or “product footprint” 

 

 Predicted Accuracy Summary Metrics: 

o CE90 (meters) and/or LE90 (meters) or similar metrics 

 Provided if metrics are available 

 Based on populated Predicted Accuracy Model with its 

corresponding confidence rating applicable as well 

 Description of geolocation extraction scenario(s) if data/product 

is “data” instead of a geolocation “product” per se: ... … 

 

 Recommended use/non-use of data/product: 

o Data/product reliability metric 

 Not available, or 

 Approximate a priori probability that an arbitrary but  

specific product contains some anomalous data: xx%  

o Qualifiers regarding recommended use/applications of data/product 

o Summary of issues 
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Table 5.2.1-1: Quality Assessment Summary – recommended content (Part 2) 

 

The contents of the above table are primarily qualitative as opposed to quantitative which facilitates the 

use of the Quality Assessment Summary file/report as an easy-to-read summary or “quick guide”; 

however, it does “point to” further details when they are available, such as populated models, provider 

specifications, etc.  The quality/confidence rankings of populated models included in the table are 

qualitative-quantitative and correspondingly labeled as “low”,” medium”, or “high”, with more definitive 

definitions of these ranks to be provided.  

 

 Confidence in populated Accuracy Assessment Model (Commodities): 

o Populated model not available 

o Low 

o Medium 

o high 

 

 Confidence in populated Predicted Accuracy Model (Commodities): 

o Populated model not available 

o Low 

o Medium 

o high 

 

 Confidence in populated Empirical Quality Model (Crowd-Sourcing): 

o Populated model not available 

o Low 

o Medium 

o high 

 

 Accuracy-related metadata included with data/product from provider? 

o If yes, summary of contents and available pointers/links to details 

 

 Underlying Accuracy Specification available from data/product provider? 

o If yes, summary of contents and available pointers/links to details 

 

 If populated Accuracy Assessment and/or Predicted Accuracy Model 

available, are the summary contents of the previous two bullets compatible? 

o Not applicable 

o Yes 

o No 
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Most of the entries in the above Quality Assessment Summary table (Table 5.2-1) are self-explanatory 

other than: (1) “Predicted Accuracy Summary Metrics” and (2) “Data/product reliability metric” in Part 1 

of the table and which are summarized as follows: 

5.2.1.1 Predicted Accuracy Summary Metrics 

The estimated top-level values of predicted accuracy of the data/product in the Quality Assessment 

Summary report (Table 5.2.1-1) are expressed as scalar accuracy metrics CE90 and/or LE90 in meters if 

the data/product corresponds to a geolocation product per se, such as a geolocation Point Cloud.  These 

metrics are approximate but provide convenient “bottom-line” predicted accuracies for the product.  They 

are based on and available only if a populated predicted accuracy model is available (see Part 2 of table) 

which is used for their computation.  Thus, they are typically unavailable if the data/product corresponds 

to Crowd-sourcing data. 

 

CE90 (meters) corresponds to the radius of a circle such that, if the circle is centered at the horizontal 

location of an arbitrary geolocation in the product, there is an approximate 90% probability that the 

geolocation’s true horizontal location resides within it (Figure 5.2.1.1-1).  LE90 (meters) corresponds to 

one-half the length of a vertical line segment centered at the vertical location of an arbitrary geolocation 

in the product such that there is an approximate 90% probability that the geolocation’s true vertical 

location resides along the line segment.   

 

 
Figure 5.2.1.1-1: Example of CE90; value equal to 15 meters is hypothetical; geolocation coordinates 

assumed relative to local tangent plane coordinate system (e.g., East-North-Up) 

 

If the data/product is data (e.g. image/metadata) instead of a product per se (e.g. 3d Point Cloud), the 

values of CE90 and/or LE90 are based on both a populated predicted accuracy model and an assumed and 

typical geolocation extraction scenario which is described in the Quality Assessment Summary as well.  
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For example, if the data corresponds to an image, either monoscopic (single image) extraction with 

external elevation source (and its predicted accuracy) or two-image stereo extraction.  The approximate 

range of imaging angles are included as part of the overall description of the extraction scenario.   

 

See TGD 2a (Predictive Statistics) for details on recommended methods for the Quality Assessment 

Management Function’s computation of the Predictive Accuracy Summary Metrics, CE90 and LE90, that 

are contained in Table 5.2.1-1.  They are computed from the predictive statistics contained in the 

corresponding populated predicted accuracy model.  In addition, if the data/product is “data” instead of 

a “product”, its corresponding predictive statistics are first propagated to ground-space; either directly 

via partial derivatives and an assumed elevation or via a “covariance-only” Multi-Image Geopositioning 

(MIG) solution or its equivalent if not an image.  A MIG solution can actually involve one or more images 

and is discussed later in this document and is detailed in TGD 2d (Estimators and their Quality Control).  A 

“covariance-only” solution only computes the solution’s a posteriori error covariance matrix; the actual 

measurements used by the solution proper are immaterial. 

 

It must be emphasized that although the scalar accuracy metrics that make-up the Predicted Accuracy 

Summary Metrics are convenient, they are only top-level summaries.  Optimal and fully informed use of 

the data/product can only be achieved if the corresponding and much more detailed predicted accuracy 

model is available to the “down-stream” NSG user or application (see Section 5.3.1.2), typically via the 

Quality Assessment processing per this document.   

 

Furthermore, as detailed later, a populated predicted accuracy model is typically “tuned” using a 

populated accuracy assessment model(s) which contains sample statistics of the error of representative 

data/products of the same general type or class of data/product to which the Quality Assessment 

Summary file/report (Table 5.2.1-1) refers. 

 

In terms of predicted accuracy, the remainder of this document concentrates on the predicted accuracy 

model – its contents (predictive statistics), population, and geolocation applications.  The Predicted 

Accuracy Summary Metrics contained in Table 5.2.1-1 are not specifically discussed in the remaining 

portions of this document. 

5.2.1.2 Data/product reliability metric 

The data/product reliability metric is a scalar probabilistic-based metric defined to have a value within the 

interval [0,1], or is specified as “unknown”, if need be.  Its top-level definition:  the approximate a priori 

probability that an arbitrary instance of the data/product does not contain anomalous data which is 

unsuitable for use and does not have missing data.   

For example, anomalous data includes 3d geolocations with extremely large errors due to problems in the 

generation of a 3d geolocation product.  Missing data corresponds to significant voids in a 3d Geolocation 

product or to a missing delineation of a major feature in a portion of a Digital Map.  For Small-Sat 

image/metadata, anomalous data includes incorrect (blundered) metadata that yields flawed metadata-

based image-to-ground relationships, images that are extremely blurred, etc.  That is, (portions) of the 
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data that are not suitable for use due to corresponding and underlying generation issues.  This does not 

include inherent issues associated with the raw data itself, such as cloud cover. 

5.2.2 Quality Assessment may take a long time to complete for some data/products 

As discussed earlier, the Quality Assessment Summary (file/report) associated with a specific type of 

data/product of interest summarizes the amount of information available regarding its corresponding 

quality and geolocation accuracy.  It also “points” to available and populated models: accuracy 

assessment, predicted accuracy, and/or empirical quality models.  A populated accuracy assessment 

model contains various a posteriori sample statistics of error, which are the basis for the selection of the 

appropriate type of predicted accuracy model and the “tuning” of the a priori predictive statistics that it 

contains.  The Empirical quality model for Crowd-sourcing is a lower-fidelity combination of these two 

models that also emphasizes the quality of data content, e.g., area of coverage and the reliability of 

content of a digital map. 

Prior to detailing the above models in Section 5.3, it is important to point out that the “time-line” for 

gathering an adequate amount of information may vary significantly for different types of data/products.  

However, the recommended techniques in this document are designed to mitigate this as much as 

possible by gathering and processing information in a sequential manner.  That is, it may take 𝑥𝑥 months 

to gather a sufficient amount of information and perform corresponding processing in order to reach a 

“high” level of confidence in results for a type of data/product of interest, but only 𝑦𝑦 ≪ 𝑥𝑥 months to 

gather initial information to reach a lower level of confidence in results.  This is better than no 

information/confidence at all as long as information is labeled as such.   The Quality Assessment Summary 

(file/report) provides the applicable “status”. 

It may also be true that for some types of data/products, this information will never become available, at 

least in a reasonable amount of time.  This should be apparent by either: (1) the corresponding low 

confidence level in the models or their complete lack of availability as specified in the Quality Assessment 

Summary (Table 5.2.1-1) or (2) the complete non-availability of the Quality Assessment Summary 

(file/report) itself.  Of course, this in itself is a form of information – it indicates to potential users of this 

type of data/product that it is unsuitable for certain applications and that they should assess the suitability 

of other types of data/products for potential use instead.  To facilitate this process, it is also recommended 

that a catalogue of available Quality Assessment Summaries, indexed by data/product type, be generated 

and made available by the Quality Assessment Management function.  

5.2.3 An Exception – Some Commodities data require minimal Quality Assessment 

A relatively small subset of Commodities data requires minimal Quality Assessment because the providers 

of the data/products already include reliable predicted accuracies.  Correspondingly, the Quality 

Assessment Management function needs only to ensure the occasional population of an accuracy 

assessment model, no population of a predicted accuracy model, and an abbreviated Quality Assessment 

Summary that essentially documents this situation. 

The occasional populated accuracy assessment model provides a quality check regarding the predicted 

accuracy from the provider.  The Quality Assessment Summary includes the Predicted Accuracy Summary 
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Metrics (CE90 and LE90) assumed available from the provider, as is typical and via their corresponding 

web-sites.  The applicable populated predicted accuracy model or its equivalent is also available directly 

from the provider as described in the representative examples below.  

5.2.3.1 Examples and why they are preferred 

The following are examples of data/products with reliable predicted accuracy models directly available 

from the vendor/provider, which is preferred whenever possible: 

(1a) Imagery with a complete physical sensor model: 

An example of the above corresponds to non-Small-Sat commercial satellite imagery/metadata available 

for some imaging systems from some providers.  Corresponding image/metadata includes access to a 

complete physical sensor model: physical sensor model (invertible ground-to-image function), adjustable 

sensor parameters (pose, calibration), and their corresponding predicted accuracy or uncertainty 

(adjustable parameters’ a priori error covariance matrix, etc.).   

The complete physical sensor model’s predicted accuracy is typically reliable, and along with the 

adjustable parameters, enables computation of the predicted accuracy of an extracted geolocation using 

the image(s), and optionally, adjustment of the image (metadata) for subsequent improved geolocation 

accuracy.   

Thus, there is no need for the population of a predicted accuracy model by the Quality Assessment 

Management function – there is already a model from the provider that is both reliable and typically of 

higher fidelity.  

More about (complete) physical sensor models and other sensor models is provided later in this 

document: an overview in Section 5.3.1.1 and further details in Section 5.3.2.  All data/products 

considered in this document are assumed to have a sensor model of some kind in order to enable a 

ground-to-data/product relationship, e.g., ground-to-image function.   

(1b) Above “mapped” to RPC: 

A (sub)example of the above is a “complete RPC sensor model”, which is generated by the data/product 

provider by fitting the complete physical sensor model’s ground-to-image function to a Rational 

Polynomial Coefficient (RPC) polynomial, defining adjustable parameters for the polynomial (low order 

coefficients), and mapping the complete physical sensor model’s predicted accuracy to RPC predicted 

accuracy.  The “complete physical sensor model”-to-“complete RPC model” mapping must be performed 

per the appropriate algorithm/procedure - see reference [8]. 

(2) 3d Point Clouds with a Generic Point Cloud Model (GPM): 

Another example corresponds to some types of 3d Point Clouds that have an accompanying Generic Point-

Cloud Model (GPM) – see reference [16].  There are two versions of GPM: GPM (sensor-space) and GPM 

(ground-space).  Both have complete sensor models: 
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 GPM (sensor-space): an identity sensor model (ground-to-ground or identity transformation), 

adjustable sensor parameters (sensor pose, etc.), and their predicted accuracy (error covariance 

matrix, etc.), where the mapping of error covariance matrices from sensor-space to ground-space 

is accomplished by knowledge of the complete physical sensor model (sensor pose, etc.) 

 GPM (ground-space): an identity sensor model (ground-to-ground or identity transformation), 

adjustable parameters for a grid of 3d anchor points, and their predicted accuracy. 

 In both of the above cases, reference [16] terms the (invertible) sensor model the “ground-to-

model” and the “model-to-ground” transformation. 

Both of the above GPM versions include the optional addition of the effects of sensor-mensuration (aka 

“unmodeled”) errors to predicted accuracy.   

The resultant predicted accuracy is reliable, contained in the product’s metadata, and computed directly 

by the provider.   

5.2.3.2 Common characteristic 

All of the above examples in Section 5.2.3.1 have additional information for the generation of predicted 

accuracy not available to the Quality Assessment Management/Analysis function: internal predicted 

accuracies of various steps in the product generation process for each specific data/product, such as (1) 

an estimate and its a posteriori error covariance matrix of sensor pose and calibration parameters 

computed by a Kalman Filter Smoother implemented at an imaging-system’s ground station, and (2) an 

estimate and its a posteriori error covariance matrix of sensor pose and calibration parameters computed 

by a Weighted Least Squares solution (block adjustment) and propagated to ground-space as appropriate 

and implemented at the data provider’s Point Cloud’s generation facility.  As such, the provider-supplied 

predicted accuracy can also be “custom-tailored” to each specific instance of the data/product, including 

the effects of sensor-to-ground geometries specific to each element in the data/product.  In addition, 

based on the above additional information, not only are the predicted accuracies reliable, their values are 

relatively small (e.g., small error covariances or “sigmas”) indicating good accuracy associated with (near) 

optimal solutions. 

Of course, there is no guarantee that the above providers’ predicted accuracies are always reliable, and 

that is why it is recommended that the Quality Assessment Management/Analysis function periodically 

populate an accuracy assessment model for comparison.  

5.2.4 Encouraging Explicit Accuracy Specifications 

The Quality Assessment Summary (Table 5.2.1-1) referenced the possible availability of metadata and/or 

specifications of accuracy made available by the data/product provider.  These are currently unavailable 

for most External Data of interest to NSG organizations, but are certainly desired by many such 

organizations.  In addition, some providers (vendors), such as those associated with Small-Sat data, have 

requested corresponding guidance for their availability, particularly if they supply data/products to 

various organizations in the NSG by contract.   It is recommended that applicable NSG organizations take 

a “pro-active” approach in enabling such guidance including recommended accuracy specifications as 

follows:   
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Recommended specifications for the data/product provided by the vendor/provider are to include 

accuracy of the data/product (e.g. CE90 and LE90).  The actual specified accuracy values (e.g. 𝐶𝐸90 ≤ 15 

meters) are not to be recommended by the NSG; they are provided solely by the provider and based on 

their system design and corresponding business model.   

Another recommended specification for the provider is the availability of a populated predicted accuracy 

model or its equivalent with the data/product or for a specified class or type of data/products. 

Any such specifications should also be verified as well by the provider, and more formally validated in 

concert with the NSG if associated with an NSG contractual relationship.   This includes validation of 

predicted accuracy as well as validation of accuracy.  TGD 2c (Specification and Validation) presents 

recommended content for accuracy and predicted accuracy requirements and processing for their 

validation.   An “easy-to-read” summary of TGD 2c is also recommended [6].  See TGD 1 [Overview and 

Methodologies] for a discussion regarding the difference between accuracy and predicted accuracy – 

“think” sample-statistics of error in previous specific data/products versus predictive statistics of error in 

arbitrary (“future”) data/products of a similar type or class of data/product, respectively. 

It is worth noting that receptive providers may be concerned about risk associated with providing such 

information, including specifications, with their data/product.  Correspondingly, they may feel that future 

contracts with NSG organizations should reflect this concern accordingly. 

5.2.4.1 Any Advertised Accuracy should be verified 

In addition, any “advertised” accuracy that is made available by the providers of External Data should be 

“verified” by the NSG via the Quality Assessment Management Function regardless the availability of 

corresponding specifications from the vendor/provider or not.  Results of an NSG Quality Assessment 

should take precedence.  There are examples of some provider web-sites providing accuracy results that 

are clearly optimistic for some of their specific data/products, i.e., present accuracy results for seemingly 

“best case” scenarios. 

5.2.4.2 Specifications for exploitation tools 

Accuracy Specifications are encouraged to be made available by External Data (product) providers as 

discussed in Section 5.2.4.  The Quality Assessment of such products/data should also be performed by 

NSG Quality Assessment, per this document.  In addition, NSG internally generated data/products should 

be subject to accuracy and predicted accuracy specification and validation, as detailed in TGD 2c 

(Specification and Validation).  Furthermore, regardless the source of the data/products used by the NSG, 

they are typically processed by exploitation tools and applications for the generation of various “end” 

products.  These tools/applications can induce additional errors of significant magnitude, and as such, it 

is recommended that the NSG levy and/or encourage specifications on such tools/applications regarding 

these errors and corresponding accuracy. 

5.2.5 Functional Flow of the Quality Assessment Management Function 

Figure 5.2.5-1 presents the top-level functional flow and major interfaces of the Quality Assessment 

Management function.  Major interfaces are with the other organizations in the NSG and with the Quality 

Assessment Analysis function.  The populated models are files/reports, i.e., not s/w code or modules. 
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Figure 5.2.5-1: Functional flow and major interfaces of the Quality Assessment Management function 
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As indicated by the above figure, the Quality Assessment Analysis function supports the Quality 

Assessment Management function.  More specifically, the Quality Assessment Management function 

“calls” the Quality Assessment Analysis function.  Their actual interrelationship is dictated by the host 

organization’s detailed design.   The Quality Assessment Analysis function is documented in Section 5.3. 

Also, as mentioned previously, other organizations in the NSG may input populated models to the Quality 

Assessment Management function for subsequent collation and for the possible extension of ensemble 

statistics via the Quality Assessment Analysis function.  These inputs are indicated by the upper left gray 

arrow in Figure 5.2.5-1.  Corresponding inputs can also include “raw” data for analysis as opposed to 

populated models. 

5.3 Quality Assessment Analysis Function 
The Quality Assessment Analysis function primarily selects and populates applicable accuracy assessment 

models, predicted accuracy models, and/or Empirical quality models for each specific type of geolocation 

data or product of interest in support of the Quality Assessment Management function.    

Like the Quality Assessment Management function, the Quality Assessment Analysis function is 

implemented by the “host” organization.  However, unlike the Quality Assessment Management function, 

it may also be implemented by other NSG organizations with corresponding outputs to the Quality 

Assessment Management function as appropriate. 

A top-level summary of various categories of External Data that the Quality Assessment Analysis function 

addresses is presented in Table 5.3-1, and is further categorized by the type of models it populates. 
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Table 5.3-1: Summary of the External Data addressed by the Quality Assessment Analysis function 

 

Reference [10] presents a brief summary of the use/definitions of various classes of “Small-Sats” that are 

referenced in Table 5.3-1. 

The various analyses performed by the Quality Assessment Analysis function are summarized in Table 5.3-

2. 

 

 

 

 

 

 

Accuracy Assessment and Predicted Accuracy Models

for the following Commodities Data: 

     Small-Sat imagery/metadata

                              term used generically to include

                              "micro" and "nanosatellites"

     Air-borne imagery/metadata

     Space-borne imagery/metadata

     Full-motion video/metadata

     Orthophotos and Orthomosaics

     3d Point Clouds

     Digital Maps

     Vector Data

     Hand-held devices

     Digital Elevation Model (DEM)

     Digital Surface Model (DSM)

                     …

Emperical Quality Models

for the following Crowd-Sourcing Data:

     Digital Maps

                              Map-based and/or image-based data

                              OpenStreetMap, Wikimapia, Google MyMaps, …

     Orthophotos and Orthomosaics

                   …
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Table 5.3-2: Summary of the Quality Assessment function’s analysis tasks and techniques 

 

As summarized in Table 5.3-2, the contents and population of the accuracy assessment model and the 

predicted accuracy model are discussed in Sections 5.3.2 and 5.3.5, which also contain various 

references to appendices for further details, such as explicit equations/algorithms for their population.   

Although not listed in Table 5.3-2, a top-level overview of the interrelationship between the accuracy 

assessment model and the predicted accuracy model is also presented in Section 5.3.1, with 

corresponding subsections that also discuss their interrelationship with sensor models and the 

importance of the predicted accuracy model in general.     

As summarized in Tables 5.3-1 and 5.3-2, the use and population of accuracy assessment and predicted 

accuracy models are not applicable to Crowd-sourcing data.  This is due to difficulties in obtaining 

sufficient ground truth for sample error statistics, the frequency of missing data and blunders in the 

data/product, and/or significant variations in its quality over different realizations of the same 

data/product type.  A lower-fidelity but more general empirical quality model is used and populated 

instead as discussed in Section 5.3.6. 

Analysis Tasks and Techniques

  Population of Accuracy Assessment Model

               Based on Sample Statistiscs

                            Requires access to error samples based on ground-truth or equivalent

               Model detailed in Section 5.3.2 

               Population/analytic techniques discussed in Section 5.3.5

  Population of Predicted Accuracy Model

               Based on analytic error-propagation modeling

                            Requires insight and tuning based on populated Acuracy Assessment Model

               Model detailed in Section 5.3.2

               Population/analytic techniques discussed in Section 5.3.5

  Based on the above populated models:

                Comparison to any accuracy descriptions/specifications available from vendor/provider

                Generation of relaibility metric in the Quality Assessment Summary (Table 5.2.1-1)

  Population of Empirical Quality Model

                 Based on statistics of comparisons to similar data and other techniques

                 Model and population techniques discussed in Section 5.3.6
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5.3.1 Accuracy assessment and predicted accuracy models and interrelationships 

An overview of the relationship between populated accuracy assessment models and predicted accuracy 

models, as well as their relationship to the Quality Assessment Summary (Table 5.2.1-1) are presented in 

Figure 5.3.1-1. 

 

Figure 5.3.1-1: The relationship between Quality Assessment Summary, Accuracy Assessment, and 

Predicted Accuracy for each specific data/product of interest 

The Quality Assessment Summary file/report, the populated accuracy assessment model, and the 

populated predicted accuracy model are updated periodically or every time a new individual contribution 

is available corresponding to a specific type or class of data/product of interest.  In particular, the 

populated accuracy assessment model’s underlying ensemble statistics are updated, and therefore the 
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populated predicted accuracy model and possibly the Quality Assessment Summary file/report may be 

updated as well.   

The Accuracy Assessment “update process” essentially performs the same processing as performed for 

the generation of an individual contribution but is based on the use of an ensemble collection of sample 

statistics over all relevant individual contributions.  This results in an integrated and representative 

populated accuracy assessment model and then a corresponding integrated and representative populated 

predicted accuracy model (solid rectangles in Figure 5.3.1-1).  These populated models are then made 

available to NSG personnel/organizations upon request, along with pointers to the individual 

contributions or populated models (dashed rectangles in Figure 5.3.1-1). 

More specifically, an initial accuracy assessment and corresponding populated accuracy assessment 

model are used to select/confirm a particular predicted accuracy model and its defining contents for the 

corresponding type or class of geolocation data/product of interest.  The sample statistics in the accuracy 

assessment are also used to compute the initial values of the predictive statistics contained in the now 

populated predicted accuracy model.  Subsequent accuracy assessments (ensemble statistics) are then 

used to periodically update the accuracy assessment model, which, in turn, is used to update the 

populated predicted accuracy model, i.e., modify or “tune” the values of its predictive statistics.  Note 

that, even though the ensemble statistics are used to generate/modify the predictive statistics, the two 

sets of statistics are somewhat different, as appropriate and as detailed later. 

Section 5.3.2 details the definitions/contents of accuracy assessment models and the predicted accuracy 

models, Section 5.3.3 discusses various companion and optional components to these models, Section 

5.3.4 “points to” related appendices, and Section 5.3.5 discusses the corresponding analysis techniques 

for the population of models.  Section 5.3.2 is necessarily “summary” in nature, but specific details and 

examples follow in Sections 5.3.3 – 5.3.5 and the related appendices. 

However, prior to proceeding with Section 5.3.2, the relationship of predicted accuracy model to the 

corresponding data/product’s sensor model is presented (Section 5.3.1.1) followed by a description of the 

importance of a populated predicted accuracy model to the end-user of the data/product (Section 

5.3.1.2).  These descriptions provide important background information for context. 

5.3.1.1 Relationships to the data/product’s sensor model and corresponding terminology 

Virtually all data/products considered in this document are assumed to include or have available a “basic 

sensor model” which provides a ground-to-data/product relationship or function (e.g., ground-to-image 

function), otherwise the data/product is not relevant, i.e., is not a geolocation-related data/product of 

interest.  The basic sensor model and its associated metadata are directly associated with (come with) the 

geospatial data/product from the producer or vendor.   

Figure 5.3.1.1-1 illustrates such a function for an Electro-optical (EO) image, and is assumed to correspond 

to a ground-to-image polynomial in this particular example.  The ground-to-image polynomial provides 

the ground-to-image relationship, or more generally, the geolocation-to-data relationship. 
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Figure 5.3.1.1-1: The ground-to-image function provided by the basic sensor model for the image; image 

location and ground location vectors are represented as row vectors instead of column vectors in the 

figure for convenience 

The additional availability of a (populated) predicted accuracy model represents the uncertainty in the 

basic sensor model, i.e., the uncertainty or error in the output of its ground-to-data/product function.   

The availability of a predicted accuracy model transforms the basic sensor model into a “complete sensor 

model”, or simply a “sensor model”.  A (complete) sensor model enables rigorous error propagation.  It 

also enables optional adjustment of the data/product for improved accuracy using control information.   

For most Commodities data, the predicted accuracy model is not available with the data/product from 

the producer or vendor, but it is defined, populated, and made available by the methods recommended 

in this document.  A predicted accuracy model represents the uncertainty in the data/product, and is also 

relative to a set of adjustable parameters that affect or parameterize the ground-to-data/product 

function, and therefore its output.   These adjustable parameters are either explicit or implicit as detailed 

in Sections 5.3.2.1, 5.3.2.3, and 5.3.2.4.  In particular, they are explicit and defined as follows for a specific 

type of sensor model termed a “physical sensor model”. 

A relatively small subset of sensor models applicable to Commodities data are termed “physical sensor 

models” because their ground-to-data/product relationship is a direct function of the sensor’s physical 

parameters, such as sensor pose (position and attitude) and possibly sensor calibration parameters.  The 

ground-to-data/product function is also parameterized by adjustable parameters corresponding to a 

subset of these physical parameters, such as corrections to the sensor position that is provided in the 

data/product’s metadata.  The corresponding predicted accuracy model represents the accuracy or 
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uncertainty in the a priori values of these adjustable parameters which are equal to zero; and hence, also 

represent the accuracy of the original metadata for the data/product.  In this particular case, the predicted 

accuracy model represents errors in sensor-space instead of data/product-space; however corresponding 

error covariance matrices are readily propagated to data/product-space and then to ground-space, if need 

be, via appropriate partial derivatives.  These partial derivatives are computed using the physical sensor 

model (ground-to-data/product function) and are typically numerical and are computed about an 

assumed operating point. 

Most sensor models corresponding to Commodities data are not physical sensor models.  Typical 

examples include sensor models with ground-to-data/product relationships as follows: (1) polynomial 

ground-to-image functions for an image, and (2) a direct ground-to-ground (identity) function for a 3d 

geolocation product.   

The predicted accuracy models referenced throughout the remainder of this document are assumed to 

be those that are not available with data/product from the producer or vendor, but are defined and 

populated by the NSG per the methods detailed in this document.  Correspondingly, these predicted 

accuracy models are applicable to the vast majority of Commodities data. 

5.3.1.2 The importance of the predicted accuracy model 

A populated accuracy assessment model corresponds to at least one specific realization or instance of a 

data/product from a type or class of data/products that is of interest, and typically corresponds to an 

ensemble collection of such realizations.  On the other hand, a populated predicted accuracy model is 

applicable to an arbitrary realization of the data/product, past or future, from the same type or class of 

data/product that is of interest, and is typically provided as part of accompanying metadata or its 

equivalent.   

The contents of a populated predicted accuracy model are considered predictive statistics whereas those 

for a populated accuracy assessment model are sample statistics.  When a populated predicted accuracy 

model is assigned or “attached” to a specific data/product by the Quality Assessment Management 

function it becomes its predicted accuracy. 

The predictive statistics in a predicted accuracy model, in conjunction with the corresponding sensor 

model enable an entire “suite” of error propagation capabilities which are listed later is this (sub) section.  

A key predictive statistic is the error covariance matrix which statistically quantifies the predicted accuracy 

of an arbitrary 3 × 1 geolocation, assuming a geolocation product. 

The 3 × 3 error covariance matrix is illustrated in Figure 5.3.1.2-1 for an arbitrary geolocation in the 

product, along with related information, such as its statistical relationship to geolocation error as well as 

a derived predictive statistic computed from the available error covariance matrix: a 90% confidence 

ellipse.  The 90% confidence ellipse is computed using the upper left 2x2 of the error covariance matrix, 

is relative to horizontal geolocation error, and assumes a Gaussian distribution of error.  
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Figure 5.3.1.2-1: Horizontal error corresponding to product’s 3d geolocation; 90% confidence ellipse 

generated from the key predictive statistic: 3x3 error covariance matrix (upper left 2x2) 

We are 90% confident that the true horizontal geolocation is within the ellipse which is centered at the 

product’s geolocation.  If the geolocation were centered at zero instead, we are 90% confident that the 

(unknown) error is within the ellipse.  This latter ellipse is also termed a 90% probability error ellipse. 

In addition, using the entire 3x3 error covariance matrix, a 90% confidence 3d error ellipsoid (or some 

other specified level of confidence or probability) can also be computed – see TGD 1 and TGD 2a for 

details.  Of course, the 90% confidence-level is also predicated on reliable predictive statistics, in this case, 

the error covariance matrix, as well as the assumption of a Gaussian distribution of error.  The 90% 

confidence ellipse (or ellipsoid) is a derived predictive statistic and is not contained in the predicted 

accuracy model per se. 

The error covariance matrix can also be used to compute scalar accuracy metrics, such as CE90 – the radius 

of a circle such that there is a 90% probability that horizontal error resides within (see TGD 1 and TGD 2a 

for details).  CE90 is a very convenient and useful predictive statistic but contains less information than 

does the 90% error ellipse as it contains no directivity regarding the x and y components of horizontal 

error.  Scalar accuracy metrics are derived predictive statistics but are typically contained in the predicted 

accuracy model for the convenience of the down-stream user/application. 

Predictive statistics also typically correspond to an a priori mean-value of error equal to zero, not to a 

non-zero sample-based mean-value of error applicable to a specific realization and which typically varies 

in sign and/or magnitude from one realization to another.   This reasonable assumption is applicable in 

Figure 5.3.1.2-1. 

Predicted Accuracy: 

Predictive Statistic:  3x3 Error Covariance Matrix 

Solution error 
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Strictly positive definite correlation functions (spdcf) are also predictive statistics that are contained in 

predicted accuracy model; more specifically, their defining parameters (typically four) are contained in 

the model.  They characterize the spatial correlation of errors across an arbitrary realization of the 

data/product.  If the data/product corresponds to a geolocation product (e.g., 3d Point Cloud), spatial 

correlation is a function of the difference between two geolocations (ground coordinates) in the same 

product.  If the data/product corresponds to an image, spatial correlation is a function of the difference 

between two locations in the same image (image coordinates).  The spatial correlation of errors 

significantly affects relative accuracy.   

Spdcf are not sample-based autocorrelation functions corresponding to a specific realization of the 

data/product or their low-fidelity alternative – a non-zero mean-value relative to the sample-based root-

sum-square of error.  However, spdcf are typically “tuned” using samples of autocorrelation (or samples 

of relative accuracy versus distance) contained in accuracy assessments. 

Finally, the predictive statistics contained in predicted accuracy model are assumed to correspond to 

errors contained in a wide-sensor homogeneous random field(s) for a combination of practicality and 

rigor.  These predictive statistics are invariant to the actual location of a geolocation or data point in the 

data/product; more specifically, absolute accuracy is invariant to location and the relative accuracy 

between two geolocations or data points is a function of the distance between them.  Sample statistics 

that are contained in corresponding accuracy assessments are used to “tune” the predictive statistics and 

are also organized consistent with this assumption. 

Note: a populated predicted accuracy model can also contain a non-zero mean-value of error if applicable 

and as detailed later. 

Suite of error propagation capabilities 

The predictive statistics contained in a populated predicted accuracy model enable an entire suite of 

“error propagation” capabilities which are not possible with a populated accuracy assessment model: 

 Predicted accuracy of an arbitrary geolocation (or image pixel location, etc.)  in the data/product 

o Mean-value of error (typically zero) 

o Error covariance matrix about the mean-value 

o Various scalar accuracy metrics (CEXX, LEXX,…) 

 Predicted relative accuracy of an arbitrary pair of geolocations in the data/product 

o Mean-value of error (almost always zero) 

o Error covariance matrix about the mean-value 

o Various scalar accuracy metrics (rel_CEXX, rel_LEXX,…) 

 Full error covariance matrix for an arbitrary set of geolocations in the data/product 

o Proper weighting/error propagation of these geolocations as control points in other 

data/product 

 Optimal adjustment or correction of the data/product using additional information, such as 

surveyed data or control imagery 
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 Optimal fusion of the data/product with other data/products – an extension of the above 

data/product adjustment to the simultaneous adjustment of multiple data/products 

Summary 

In summary, an accuracy assessment applicable to an arbitrary realization of a data/product type, past or 

future, instead of a specific and specified realization(s), is not possible.  It would require an adequate 

number of error samples from corresponding ground-truth which is either not available (typical) or its 

subsequent comparison to the product too time-consuming.   A populated predicted accuracy model is 

used instead.  It is applicable to an arbitrary realization of the type or class of data/product of interest. 

In addition, a populated predicted accuracy model enables an entire suite of error propagation capabilities 

not possible with an accuracy assessment.  Of course, as mentioned earlier and as detailed later in this 

document, a populated predicted accuracy model is typically tuned using a populated accuracy 

assessment model, the latter based on past and specific realizations. 

5.3.2 Accuracy assessment and predicted accuracy model definitions and content 

The following definitions and their content correspond to accuracy assessment models and to predicted 

accuracy models in support of External Data and its Quality Assessment.  The definitions reference 

common statistical terms and are somewhat functionally based, with implicit and explicit inputs and 

outputs.  Figure 5.3.2-1 provides an overview followed by related definitions.  The various analysis 

techniques discussed in Section 5.3.5 are used to populate these models, which are then maintained and 

disseminated by the Quality Assessment Management function as discussed earlier in Section 5.2.   

As indicated by Figure 5.3.2-1, models are first categorized by accuracy assessment or by predicted 

accuracy and then subcategorized.   
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Figure 5.3.2-1: Predicted accuracy models and their relationships with accuracy assessment models; 

dashed lines represent feedback to “tune” predicted accuracy models from populated accuracy 

assessment models 

There are three subcategories of predicted accuracy models and two subcategories of accuracy 

assessment models.  For example, a “Geolocation Product Predicted Accuracy Model” is recommended 

for 3d Point Clouds while a “Geolocation Data Predicted Accuracy Model: Measurement-space” is 

recommended for Small-Sat images.   

The various models illustrated in Figure 5.3.2-1 are described in Sections 5.3.2.1 through 5.3.2.5, including 

content and the recommended correspondence between type of geolocation data/product and 

appropriate model(s). The descriptions are relatively high-level, but specific details, including population, 

applications, and related examples, follow in Sections 5.3.3 - 5.3.5, Section 5.3.7, and in related 

appendices in order to facilitate further insight and specificity.   

However, prior to proceeding with the descriptions of the various models, some background information 

is presented first: (1) underlying principles for the various models, (2) reasoning for their explicit names, 

and (3) the “assignment” or applicability of the appropriate model to the data/product of interest. 

Principles based on an extension of photogrammetry 
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Photogrammetry is defined as the process of deriving metric information of an object through 

measurements made on photographs (images) of the object and is the foundation for the extraction of 

geolocation information from most geolocation data/products of interest, and is also closely related to 

various concepts of computer vision.  See reference [15] for further details regarding photogrammetry. 

The various models presented in Figure 5.3.2-1, their associated population, and their use for the 

extraction of geolocation information are based on the principles of photogrammetry, but are also 

extended to non-imagery and the use of modern estimation theory and probabilistic concepts (e.g., 

strictly positive definite correlation functions, random fields, order statistics, etc.) in order to mitigate the 

effects of minimal accuracy pedigree associated with most External Data. 

Terminology: data vs. product; categories of predicted accuracy models  

The following presents the reasoning for the specific names given to the various models depicted in Figure 

5.3.2-1.  In order to do so, a more detailed explanation of the term “data/product” is presented first.   

 Relative to the term “data/product” which is used frequently throughout this document: 

“product” corresponds to a geolocation product, such as a 3d Point Cloud, and “data” corresponds 

to data gathered by a sensor(s) or subsequently formed from it (e.g., images).  A subset of this 

data is then measured by an NSG user/application in order to extract geolocations and/or 

generate geolocation products. 

 Regarding the term “data”, it is further subcategorized based on the corresponding sensor model 

that it is associated with: 

  “sensor-space” data is associated with a physical sensor model since its adjustable 

parameters directly correspond to sensor metadata (e.g., sensor pose)  

 “measurement-space” data is associated with a (standard) sensor model since its output 

is to be measured (e.g., image coordinates) in order to extract geolocations and/or 

subsequently generate geolocation products 

 As such, the following three names are used to represent the applicable categories of predicted 

accuracy models: 

 “Geolocation Product Predicted Accuracy Model” 

 “Geolocation Data Predicted Accuracy Model: Sensor-space” 

 “Geolocation Data Predicted Accuracy Model: Measurement-space” 

 The reasoning for the names of only the various predicted accuracy models is presented above, 

as the names for the accuracy assessment models follow in accordance. 

 Note: the more general term “geospatial” is sometimes substituted for “geolocation” in the 

names of the above models.  

Although the above three names are used for the applicable predicted accuracy models in the remainder 

of this document, the term (geolocation) “data/product” is sometimes used to represent either “data” or 

“product” for convenience.  The more applicable term should be apparent from context.  This also helps 

to compensate for any possible ambiguity regarding the term “data”, which could be considered a package 

of data or possibly a product itself in some cases; e.g., perhaps for an image with metadata. 
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Applicability of the appropriate predicted accuracy model 

The appropriate predicted accuracy model is usually readily apparent for a given type or class of 

geolocation data/product of interest based on the descriptions for the models that are presented in 

Sections 5.3.2.1 through 5.3.2.5.  For example, if a 3d Point Cloud, the Geolocation Product Predicted 

Accuracy Model is applicable.  If an image, the Geolocation Data Predicted Accuracy Model: Measurement 

space or the Geolocation Data Predicted Accuracy Model: Sensor-space is applicable.  The former 

(Measurement-space) is usually applicable since physical sensor models are not available for most 

Commodities data as discussed previously in Sections 5.2.3 and 5.3.1.1. 

However, the appropriate correspondence of predicted accuracy model to geolocation data/product may 

not be so apparent for some geolocation data/products with corresponding and representative 

recommendations as follows: 

 A Digital Elevation Model (DEM) or a Digital Surface Model (DSM) – the Geolocation Product 

Predicted Accuracy Model as applied to either 1d errors (only z errors are to be considered), 2d 

errors (only horizontal errors are to be considered), or 3d errors, as appropriate for the particular 

type of class of data/product of interest (e.g., vendor, date-range, possibly AOI, etc.) 

 Orthophoto or ortho-image – errors are considered 2d horizontal geolocation errors, with 

predicted accuracy represented using either a Geolocation Product Predicted Accuracy Model or 

a Geolocation Data Predicted Accuracy Model: Measurement-space, whichever is most 

convenient: 

o If the former, errors are considered directly in terms of a geolocation product, in that the 

image is projected directly onto horizontal ground-space during orthophoto generation; 

the basic sensor model is the identity transformation, as it maps horizontal ground-space 

to horizontal ground-space.   

o If the later, the orthophoto is considered an image represented in (projected to) 

horizontal ground space; again the basic sensor model is the identity transformation, as 

it maps horizontal ground space to image-space which is also defined as horizontal 

ground-space. 

Now on with the descriptions for the various models presented in Figure 5.3.2-1: 

5.3.2.1 Geolocation Product Predicted Accuracy Model 

The Geolocation Product Predicted Accuracy Model is applicable to geolocation products of a specific and 

specified type, such as a DEM, Ortho-image, or 3d Point Cloud with corresponding identified provider, 

date-range, etc.  It is an a priori uncertainty (error) model for the data/product’s 1d, 2d, and/or 3d 

geolocation errors and corresponding relative geolocation errors.  It is used for predicting the accuracy 

and relative accuracy of the data/product’s geolocations. 

Predictive Statistics 

The Geolocation Product Predicted Accuracy Model includes the following a priori predictive statistics that 

represent the (1d, 2d, and/or 3d) errors in an arbitrary realization of the product: 
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 A priori mean-value, covariance matrix, strictly positive definite correlation function (spdcf), and 

scalar accuracy metrics (e.g., CE90, LE90, relCE90, relLE90) of geolocation errors: 

o The above set of predictive statistics corresponds to the “standard” predicted accuracy 

model for a geolocation product 

o The inclusion of scalar accuracy metrics is optional and for the convenience of the 

down-stream user as they can be derived from the predicted statistics that are 

provided. 

 As a recommended option, the above predictive statistics can also be grouped together 

consistent with a Mixed Gaussian Random Field (MGRF) with corresponding identified wide-

sense homogeneous random fields as well as partitions and their a priori probability of 

occurrence.  This allows for the representation of predicted accuracy that can vary over the 

product (realization): 

o There is a set of the above predictive statistics for each group or partition 

o See Section 5.3.3.3 for further details of an MGRF and its specifiable partitions and 

random fields. 

The predictive statistics are contained in the product’s metadata or its equivalent.   

The predictive statistics in a populated Geolocation Product Predicted Accuracy Model are typically tuned 

using the sample statistics contained in a populated Geolocation Product Accuracy Assessment Model 

(Section 5.3.2.2).  Appendix B details this process. 

Relationship with the (complete) sensor model 

The Geolocation Predicted Accuracy Model is a major component of the geolocation product’s sensor 

model which includes the ground-to-product function (relationship).  This function is simply the identity 

function (transformation) since an element of the product is already expressed directly in ground-space.   

Note: a possible exception corresponds to any applicable ground-space coordinate system 

transformations of interest; considered ancillary and detailed processing and not specifically addressed in 

this document. 

The sensor model’s adjustable parameters are “direct” adjustable parameters that modify the output of 

the ground-to-product function directly, i.e., are 3d geolocation offsets.  For example, if an adjustable 

parameter 𝛿𝑋 is non-zero and associated with a geolocation 𝑋, it modifies the geolocation directly as 

follows: 𝑋 → 𝑋 + 𝛿𝑋.  The a priori values of these adjustable parameters are zero and the Predicted 

Accuracy Model represents their uncertainty, and hence, represents the uncertainty of the geolocations 

in the product. 

In theory, each geolocation in the product corresponds to its own adjustable parameter.  However, all of 

the adjustable parameters share the same predictive statistics or uncertainty in their a priori values and 

there is no need to identify them (their underlying geolocations) explicitly unless the product is adjusted.  

Hence, they are also “implicit” adjustable parameters.   
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Note: because the adjustable parameters are direct, the corresponding partial derivative of an element in 

the product (a geolocation) with respect to its corresponding adjustable parameter is the identity matrix; 

therefore, there is no need to explicitly use the partial derivatives in error propagation.  

The sensor model includes the optional ability to adjust the product in order to improve its geolocation 

accuracy prior to its subsequent use, i.e., enables adjustability of the product.  The adjustment is 

implemented via a grid of 3d corrections across the product.  The adjustment corresponds to non-zero 

values for the grid of adjustable parameters (corrections) which are then interpolated to adjust (correct) 

an arbitrary geolocation in the product, i.e., 𝑋_𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 → 𝑋_𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 + 𝛿𝑋_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑.  An 

overview of recommended geolocation data/product adjustment is presented in Section 5.3.3.1, and 

detailed specifically for a geolocation product in Appendix E. 

Applications 

A populated Geolocation Product Predicted Accuracy Model enables the computation of predicted 

accuracy for any geolocation in the product and the computation of relative accuracy between any two 

geolocations in the product, i.e., enables error propagation.  It also supports adjustability of the product 

for subsequent improved geolocation accuracy and/or fusion with other geolocation products. 

Spdcf 

Finally, an spdcf is a predictive statistic that is an important part of this predicted accuracy model and 

many of the other models that are defined in the following subsections, and is used to represent the 

spatial correlation of errors corresponding to geolocations (or pixel locations if corresponding to an image) 

in the same arbitrary product or realization, with two examples of spdcf presented in Figure 5.3.2.1-1 as 

a further introduction: 
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Figure 5.3.2.1-1: Correlation of errors (unit-less) verses 2d horizontal distance (meters) – two spdcf 

examples: exponential decay (isotropic) and separable exponential decay (anisotropic) as a function of 

horizontal distance between 3d geolocations 

As a further example of spdcf, if only vertical geolocation errors are of interest with a common variance 

of error equal to 𝜎𝑧
2 , the variance of their relative error is equal to 𝑟𝑒𝑙 𝜎𝑧

2 = 2𝜎𝑧
2(1 − 𝜌(∆𝑋)), where 

𝜌(∆𝑋) is the value of the applicable spdcf evaluated at the horizontal difference ∆𝑋 between two 

geolocations in the same realization of the product.  As correlation increases, relative error statistically 

decreases due to the cancellation of common error.   Furthermore, applicable correlation is higher the 

closer the two geolocations.   

In addition, an spdcf can be defined to yield an arbitrary but specifiable correlation value anywhere in the 

interval [0,1) for an arbitrarily small difference ∆𝑋 and with a corresponding 𝑟𝑒𝑙 𝜎𝑧
2 > 0.  This 

corresponds to a non-zero specifiable relative accuracy for two geolocations arbitrarily close together, 

which also increases thereafter with increasing distance.   This feature is appropriate for many types of 

geolocation products. 

An spdcf family that supports this important capability is the “CSM four parameter” family which is further 

detailed in Section 5.8.3.2 of TGD 1 (Overview and Methodologies) and in Appendices E and F of this 

document.  It also supports generation of both of the correlation surfaces illustrated in Figure 5.3.2.1-1.  

In particular, spdcf from the “CSM four parameter” family were used that were based on the two 

dominant parameters only (𝐴 and 𝐷) from the four that are available (𝛼 = 𝛽 = 0): 

 𝜌(∆𝑋) = 𝐴𝑒−√∆𝑥2+∆𝑦2/𝐷  (isotropic; 0 < 𝐴 ≤ 1, 0 < 𝐷) 

 𝜌(∆𝑋) = (𝐴𝑥𝑒
−√∆𝑥2/𝐷𝑥) (𝐴𝑦𝑒−√∆𝑦2/𝐷𝑦)  (anisotropic; 0 < 𝐴𝑥 ≤ 1, 0 < 𝐷𝑥; 0 < 𝐴𝑦 ≤

1, 0 < 𝐷𝑦) 
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 𝜌(∆𝑋) ≡ 1 at ∆𝑋 = [∆𝑥 ∆𝑦]𝑇 = [0 0]𝑇 and 𝜌(∆𝑋) < 1 for all ∆𝑋 ≠ [0 0]𝑇 

 there can be a separate spdcf for each component (x, y, or z) of geospatial error or there can be 

common spdcf for subsets of the components, typically for (x, y) and for (z). 

5.3.2.2 Geolocation Product Accuracy Assessment Model 

The Geolocation Product Accuracy Assessment Model is applicable to at least one specific geolocation 

product, or realization, of a specified type or class of such products, such as a specific DEM, Ortho-image, 

or 3d Point Cloud, via the use of ensemble statistics over the realizations.  It consists of accuracy and 

relative accuracy metrics based on sample statistics of product 1d, 2d and/or 3d geolocation errors.  

Sample Statistics 

The Geolocation Product Accuracy Assessment Model includes the following sample statistics: 

 Sample-based mean-values, covariance matrices, autocorrelation values (approximate spdcf 

values), and scalar accuracy metrics (e.g., CE90, LE90, relCE90, relLE90) of geolocation errors  

o If an MGRF is applicable, the above sample statistics are grouped together consistent 

with a Mixed Gaussian Random Field (MGRF) with corresponding identified random 

fields as well as partitions with their a priori probability of occurrence included as a 

statistic. 

o The inclusion of scalar accuracy metrics is optional and assumes the availability of 

enough independent error samples for their meaningful computation. 

 Corresponding error samples consist of product geolocations minus corresponding ground truth 

coordinates (e.g., accurate surveyed locations). 

 The number and degree of independence of the various error samples and an estimate of the 

accuracy of the corresponding ground truth used to compute the error samples are also 

included. 

Applications 

A populated Geolocation Product Accuracy Assessment Model is used to generate/tune a corresponding 

Geolocation Product Predicted Accuracy Model.  When the latter corresponds to an MGRF representation 

of predicted accuracy (see Section 5.3.3.3), it is also recommended that the former categorize sample 

statistics by MGRF partition. 

A Geolocation Product Predicted Accuracy Model is considered reliable when consistent with applicable 

Geolocation Product Accuracy Assessment(s), while taking into account the statistical significance 

corresponding to the number of underlying error samples. 

5.3.2.3 Geolocation Data Predicted Accuracy Model: Sensor-space 

The Geolocation Data Predicted Accuracy Model: Sensor-space is applicable to geolocation data of a 

specific type or class of data, such as image/metadata (2d measurements) or LIDAR/metadata (direct 3d 

measurements of geolocations) with corresponding identified provider, date-range, etc.  It is an a priori 

uncertainty (error) model for the data.  And more specifically, it is applicable to the sensor-space 

adjustable parameters in the data’s sensor model, assumed to be a “physical sensor model”.  As such, it 
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represents the uncertainty in the sensor support data or metadata for the data, such as sensor pose 

(position and attitude) and calibration parameters. 

 Predictive Statistics 

The Geolocation Data Predicted Accuracy Model: Sensor-space includes the following a priori predictive 

statistics applicable to an arbitrary realization of the data (e.g., image): 

 A priori mean-value, covariance matrix, and spdcf corresponding to errors (units varied) in a 

corresponding vector of sensor-space adjustable parameters for a set of data (data realization) 

o The spdcf represents the temporal correlation of error in the sensor-space adjustable 

parameters between multiple realizations of the data, when applicable; e.g., for same-

pass images. 

 Similar predictive statistics to the above can also be included corresponding to “sensor-

mensuration” errors as an option and when applicable. 

o Sensor-mensuration (aka “unmodeled”) errors represent the high-frequency effects of 

sensor errors on the data (e.g., image location or mensuration errors) when present and 

of significant “power” – see TGD 1 (Overview and Methodologies) for further 

background/details. 

 As such, errors correspond directly to data errors (e.g., image locations), not 

errors in sensor-space adjustable parameters. 

o A corresponding spdcf represents the spatial correlation of errors within the same data 

realization.  Sensor-mensuration errors are defined as uncorrelated between different 

data realizations 

The predictive statistics are contained in the data’s metadata or its equivalent.   

The predictive statistics in a populated Geolocation Data Predicted Accuracy Model: Sensor-space are 

typically tuned using the sample statistics contained in a populated Geolocation Data Accuracy 

Assessment Model (Section 5.3.2.5). 

Relationship with the (complete) sensor model 

The Geolocation Data Predicted Accuracy Model: Sensor-space is a major component of the geolocation 

data’s sensor model.  This physical sensor model includes a ground-to-data function (relationship) that 

also enables a (inverse) data-to-ground function.  The sensor model is driven by the data’s metadata that 

contains the values of related physical sensor parameters, such as sensor pose and calibration parameters.  

The physical sensor model is implemented via a fairly complicated mathematical algorithm/code or via an 

API to the (compiled) code; for example, if the data is an image, the physical sensor model is not simply a 

(fitted) ground-to-image polynomial.  

An identified subset of the corresponding physical sensor parameters is also adjustable. The a priori values 

of its corresponding adjustments (corrections) are equal to zero with a priori uncertainty as specified by 

the predictive statistics in the Geolocation Data Predicted Accuracy Model: Sensor-space.  
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The physical sensor model enables rigorous error propagation, including computation of the predicted 

accuracy and relative accuracy of the data (typically an image) and subsequently propagated to ground-

space.  It also enables adjustability of the data, i.e., the solution for non-zero adjustable parameters that 

affect the ground-to-data function in order to improve subsequent accuracy. 

Note: the RSM replacement sensor model is also considered an equivalent of a (complete) physical sensor 

model, as it is derived using the latter during data/product generation with virtually identical functionality, 

including adjustability.  See chapter 10.3 of [14] for a description of RSM. 

Applications 

When available, use of a physical sensor model(s) in conjunction with geolocation data is generally 

preferred for the generation of 3d geolocation products and related geospatial objects; for example, a 

DEM generated using two (stereo) images and their corresponding physical sensor models.  The physical 

sensor model and its predicted accuracy also enable the optimal extraction of geolocations via Multi-

Image Geopositioning (MIG).  See Section 4.1.2 and Appendix B.1 of TGD 2d (Estimators and their QC) for 

details regarding MIG.  In addition, see [14,15] for a general description of physical sensor models 

associated with imagery (photogrammetry) and corresponding representation of uncertainty as well as 

adjustability. 

The Geolocation Data Predicted Accuracy Model: Sensor-space and its corresponding physical sensor 

model are typically “higher fidelity” as compared to the Geolocation Data Predicted Accuracy Model: 

Measurement-space and its corresponding sensor model which are described in the next section, Section 

5.3.2.4. 

Caveat regarding non-use for the task at hand 

However, a Geolocation Data Predicted Accuracy Model: Sensor-space (or its equivalent) and its 

corresponding physical sensor model are typically not available/applicable for most Commodities data 

used by the NSG, in which case the Geolocation Data Predicted Accuracy: Measurement-space and its 

corresponding sensor model are applicable and recommended (Section 5.3.2.4).  Furthermore, even if 

available, their predictive statistics are difficult to “tune” with accuracy assessments, as the former are in 

terms of sensor-space adjustable parameters and the latter in terms of sample statistics of geolocation 

error or equivalent image-space errors.   

The (complete) physical sensor model and the population of its predicted accuracy are more applicable 

during data generation (Section 5.2.3) and not to the Quality Assessment Management/Analysis function.  

As such, the Geolocation Data Predicted Accuracy Model: Sensor-space and its corresponding physical 

sensor model and applications are discussed only briefly in the remainder of this document. 

5.3.2.4 Geolocation Data Predicted Accuracy Model: Measurement-space 

The Geolocation Data Predicted Accuracy Model: Measurement-space is applicable to geolocation data 

of a specific type or class of data, such as Small-Sat image/metadata (2d image measurements), RPC 

image/metadata (2d image measurements), or LIDAR ground data/metadata (3d geolocation 
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measurements) with corresponding identified provider, date-range, etc.  It is an a priori uncertainty (error) 

model for the data.   

The Geolocation Data Predicted Accuracy Model: Measurement-space is an a priori uncertainty (error) 

model for the approximate summed effects of sensor-space adjustable parameter errors, as represented 

in (projected to) measurement-space.  For example, if data is an image/metadata, this is an uncertainty 

model for errors in the output of the sensor model’s ground-to-image function, or more specifically, errors 

in the corresponding output of image coordinates (line,sample), due to underlying sensor pose errors. 

Image coordinates are sometimes simply referred to as “image locations” and their errors as “image 

location errors” in this document and are also more formally represented as 2d errors in the 2 × 1 vector 

𝑚 = [𝑙𝑖𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒]𝑇.  The superscript 𝑇 corresponds to vector transpose. 

The term “Measurement-space” in “Geolocation Data Predicted Accuracy Model: Measurement-space” is 

a reminder that the corresponding geolocation data of interest typically corresponds to a measurement, 

such as a measurement (location) of a pixel in an image that corresponds to an identified feature of 

interest.   

In addition, when the geolocation data does correspond to an image, the term “Geolocation Data 

Predicted Accuracy Model: Image-space” is sometimes used instead for specificity.  

Predictive Statistics 

The Geolocation Data Predicted Accuracy Model: Measurement-space includes the following a priori 

predictive statistics for an arbitrary realization of the data (e.g. image): 

 A priori mean-values, covariance matrices, spdcf, and scalar accuracy metrics (e.g. CE90, LE90, 

relCE90, relLE90) corresponding to errors in locations or measurements in the data 

o For example, errors may correspond to 2d measurements or locations 𝑚 =

[𝑙𝑖𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒]𝑇 in an image, typically in terms of pixels.    

o The spdcf represents the correlation of errors between multiple measurements in the 

same realization of the data (e.g., same image).  

o The above predictive statistics correspond to errors associated with a wide-sense 

homogeneous random field for practicality and reasonable fidelity. 

o Scalar accuracy metrics are optional and for the convenience of the down-stream user 

as they can be computed instead from the predictive statistics that are provided. 

 Sensor-mensuration (aka “unmodeled”) errors can also be represented as an option, with 

additional a priori predictive statistics similar to those listed above. 

 As an option, the uncertainty model and its a priori statistics for data errors may extend to an 

uncertainty model for multiple realizations of the data; e.g., the temporal correlation of errors 

between “same-pass” images, in which case additional spdcf are included which represent the 

temporal correlation.  If not included, errors between different realizations of the data are 

assumed uncorrelated, as is typical for Commodities data. 

The predictive statistics are contained in the data’s metadata or its equivalent.   
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The predictive statistics in a populated Geolocation Data Predicted Accuracy Model: Measurement-space 

are typically tuned using the sample statistics contained in a populated Geolocation Data Accuracy 

Assessment Model (Section 5.3.2.5).  Appendix C details this entire process. 

Relationship with the (complete) sensor model 

The Geolocation Data Predicted Accuracy Model: Measurement-space is a major component of the 

geolocation data’s sensor model.  This sensor model is not a physical sensor model.  Its ground-to-data 

function (relationship) also enables an inverse data-to-ground function and is driven by metadata that 

contains the values of the parameters that define the function, such as the coefficients of a ground-to-

image polynomial. 

The sensor model’s adjustable parameters are “direct” adjustable parameters that modify the output of 

the ground-to-data function directly, e.g., are 2d image location offsets if an image.  If an adjustable 

parameter 𝛿𝑚 is non-zero and associated with a data location or measurement 𝑚, it modifies the location 

directly as follows: 𝑚 → 𝑚 + 𝛿𝑚.  The a priori values of these adjustable parameters are zero and the 

Geolocation Data Predicted Accuracy Model represents their uncertainty, and hence, represents the 

uncertainty of the locations of the elements in the data, e.g., the image-locations (pixels) in an image. 

In theory, each element in the data corresponds to its own adjustable parameter.  However, all of the 

adjustable parameters share the same predictive statistics or uncertainty in their a priori values and there 

is no need to identify them (their underlying locations) explicitly unless the data is adjusted.  Hence, they 

are also “implicit” adjustable parameters.   

Note: because the adjustable parameters are direct, the corresponding partial derivative of an element in 

the data with respect to its corresponding adjustable parameter is the identity matrix; therefore, there is 

no need to explicitly use these partial derivatives in error propagation.  

The sensor model includes the optional ability to adjust the data in order to improve its accuracy prior to 

its subsequent use, i.e., enables adjustability of the data.  If the data is an image, the adjustment is 

implemented via a grid of 2d corrections across the image.  The adjustment corresponds to non-zero 

values for the grid of adjustable parameters (corrections) which are then interpolated to adjust (correct) 

an arbitrary image-location in the image, i.e., 𝑚_𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 → 𝑚_𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 + 𝛿𝑚_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑.  

Section 5.3.3.1 presents further details. 

Applications 

A populated Geolocation Data Predicted Accuracy Model: Measurement-space enables the computation 

of predicted accuracy for any element in the data and the computation of predicted relative accuracy 

between any two elements in the data, i.e., enables error propagation.  It also supports adjustability of 

the data for subsequent improved accuracy.  Some related details follow assuming that the data is an 

image and that errors in geolocations derived from the image(s) are of interest.  Errors in the geolocations 

are primarily due to errors in the image(s): 
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An example of an image-to-ground function (inverse of the ground-to-image function) and related errors 

corresponding to an image (data) are depicted in Figure 5.3.3.1-1 of Section 5.3.3.1 and in Figure 5.3.5.3-

1 of Section 5.3.5.3.  Regarding the latter, image-space errors are included in the measured pixel location.   

More generally, the (complete) sensor model, allows for the computation of a geolocation(s) and its 

predicted accuracy via an optimal MIG solution based on one or more images.  The latter relies on the 

predictive statistics of the data (measurement or image location errors) contained in the predicted 

accuracy model to weight the measurements and correspondingly affect the solution for the 

geolocation(s) and its a posteriori error covariance matrix or predicted accuracy.  Figure 5.3.4.2-1 presents 

an overview of MIG for a geolocation based on multiple images: 

 

Figure 5.3.4.2-1: MIG 3d geolocation solution and its predicted accuracy using 2 or 3 image rays, each 

from a different image; rays are “image-to-ground” rays in 3d space and are computed using the basic 

sensor model; 2-image solution uses measurements corresponding to the 2 blue rays, the 3 image 

solution uses measurements corresponding to the 2 blue rays and 1 purple ray 

Similarly, the sensor model can also be used for the generation of a 3d geolocation product and other 

geospatial objects, such as a DEM generated using two (stereo) images and that also computes the 

predicted accuracy of the corresponding geolocations.   

Optional but equivalent methods to represent the predicted accuracy of data errors 

Data errors (aka data location or measurement errors) may also be expressed in spaces (geometric planes) 

other than data-space as long as they are equivalent.  For example, if an image, one of the following 

alternate approaches may be implemented: 

 Equivalent errors in a plane perpendicular to the imaging locus at the intersection of the imaging 

locus and an external estimate of the geolocation’s elevation; the imaging locus is approximately 
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equal to the line-of-sight vector between the sensor and the geolocation if an EO image (image-

to-ground function). 

 As above except expressed in a local horizontal tangent plane near the intersection of the 

imaging locus and an external estimate of elevation 

 Equivalent sensor attitude 2d errors (milliradians) about the nominal imaging locus.  This 

method requires an estimate of an EO sensor’s 3D position (often not available when only 

Rational Polynomial Coefficient (RPC) metadata is provided) as well as an external estimate of 

the geolocation’s elevation.   

All of the above alternatives are also associated with the (basic) sensor model, which inherently specifies 

the nominal imaging geometry (angles) and is required to convert errors in pixels to errors in appropriate 

units.  The first and second alternate approaches, often associated with the RPC sensor model, listed 

above also require an external estimate of elevation for the conversion.  See Section 5.6.1 of TGD 2a 

(Predictive Statistics) regarding conversion of covariance matrices of errors expressed in one coordinate 

system to another coordinate system based on the use of computed partial derivatives. 

  Figure 5.3.2.4-2 illustrates the three alternate approaches: 

 

Figure 5.3.2.4-2: Data-space (aka Measurement-space) predicted accuracy if an EO imaging sensor; 

partially represented as CE90;  

As noted in the title of Figure 5.3.2.4-2, CE90 is only a subset of the predictive statistics used to represent 

errors in the data (image); other statistics include the error covariance matrix, spdcf, etc.  The CE90 circle 

is also equivalent to a 90% error ellipse which is also equivalent to a (scaled) error covariance matrix if the 

matrix is diagonal with equal variances – see TGD 1 (Overview and Methodologies) and TGD 2a (Predictive 

Statistics) for more details. 
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5.3.2.5 Geolocation Data Accuracy Assessment Model 

The Geolocation Data Accuracy Assessment Model is applicable to at least one specific set of data, or 

realization, of a specified type or class of such data, such as Small-Sat images.  It consists of accuracy and 

relative accuracy metrics based on sample statistics of errors in the data (measurements), or alternatively, 

errors in corresponding geolocations. 

More specifically, an assessment of accuracy is based on ensemble statistics of error taken over one or 

more specific sets of data (realizations) using one of two possible approaches for the representation of 

error.  The first approach is generally applicable to the standard or non-physical sensor model and a 

populated Geolocation Data Predicted Accuracy Model: Measurement-space.  The second approach is 

generally applicable to the physical sensor model and a populated Geolocation Data Predicted Accuracy 

Model: Sensor-space. 

1) Errors are in data-space and correspond to conjugate measurements minus ground-truth 

geolocations projected to data-space via the ground-to-data function and its metadata.  

Conjugate measurements are the identification/measurement of the ground-truth points in 

data-space (e.g., image). 

a. Alternatively, if an image, the above errors can be projected to a ground-plane 

perpendicular to the image-locus (meters) or along the horizontal ground-plane itself as 

discussed in Section 5.3.2.4 

2) Errors are in ground-space and consist of conjugate measurements projected to ground-space, 

using the inverse of the ground-to-data function, minus the ground-truth geolocations.  

Conjugate measurements are the identification/measurement of the ground-truth points in 

data-space (e.g., image). 

a. 2d horizontal errors (meters) are applicable if the data and its sensor model are 

assumed to support the generation of horizontal geolocations at an assumed height, 

e.g., image-based monoscopic extraction. 

b. 3d geolocation error (meters) are applicable if the data and its sensor model are 

assumed to support the generation of 3d geospatial locations, e.g., image-based stereo 

extraction. 

c. The above errors or their statistics need to be subsequently “mapped” to corresponding 

sensor-space adjustable parameters if a physical sensor model is applicable (difficult). 

Sample Statistics 

The Geolocation Data Accuracy Assessment Model includes the following sample (a posteriori) statistics: 

 Sample-based mean-values, covariance matrices, autocorrelation values, and optional scalar 

accuracy metrics, e.g., CE90, LE90, relCE90, relLE90, etc., of data (measurement-space) errors or 

geolocation errors, whichever is applicable per the above paragraph. 

o Sample statistics are organized consistent with errors that are assumed to correspond to 

wide-sense homogeneous random fields for practicality with reasonable fidelity. 

o The scalar accuracy metrics are optional assuming the availability of enough 

independent error samples for their meaningful computation. 
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 Statistics regarding the number and the degree of independence of the various sampled errors 

and an estimate of the accuracy of the corresponding ground truth used to compute the error 

samples. 

Applications 

A populated Geolocation Data Accuracy Assessment Model is used to initialize or subsequently “tune” 

either a Geolocation Data Predicted Accuracy Model: Sensor-space or a Geolocation Data Predicted 

Accuracy Model: Measurement-space.  Also, the latter are considered reliable when consistent with the 

Geolocation Data Accuracy Assessment(s), while taking into account the statistical significance of the 

corresponding number of samples. 

5.3.3 Companion Components 

There are three important companion components to the predicted accuracy models (and sensor models) 

described in Sections 5.3.2.1, 5.3.2.3, and 5.3.2.4.  They are described below with typically more detail 

than in the previous model descriptions: 

 Adjustment “model” 

o Applicable to either the Geolocation Product Predicted Accuracy Model or the 

Geolocation Data Predicted Accuracy Model: Measurement-space 

o Briefly introduced earlier in Sections 5.3.2.1 and 5.3.2.4, and detailed further in Section 

5.3.3.1 below 

 Predicted accuracy model for Full Motion Video (FMV) 

o An extension of the Geolocation Data Predicted Accuracy Model: Measurement-space to 

Full Motion Video  

o See Section 5.3.3.2   

 Mixed Gaussian Radom Field (MGRF) 

o A recommended sub-model to contain the entire a priori uncertainty model (predictive 

statistics) in a Geolocation Product Predicted Accuracy Model 

o More specifically, MGRF is recommended as the “core element” of the Geolocation 

Product Predicted Accuracy Model when corresponding products contain non-trivial 

variations in accuracy across the product.  Use of an MGRF is flexible, practical, and 

rigorous. 

o See Section 5.3.3.3 

5.3.3.1 Adjustment 

An adjustment “model” is an important companion component to the predicted accuracy model 

contained in a (complete) sensor model.  The predicted accuracy models considered are either: (1) a 

Geolocation Product Predicted Accuracy Model, or (2) a Geolocation Data Predicted Accuracy Model: 

Measurement-space.  Implementation of the adjustment model is optional and based on a correction grid 

that adjusts or corrects the corresponding data/product.  The solution for the corrections or adjustments 

in the grid are based on additional information, such as surveyed ground control points, control imagery, 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

60 

or other overlapping data/products, with subsequent improvements in the accuracy and predicted 

accuracy of the data/product.  This concept was introduced earlier in Sections 5.3.2.1 and 5.3.2.4. 

(An adjustment model is also applicable to the Geolocation Predicted Accuracy Model: Sensor-space or 

its equivalent contained in a (complete) physical sensor model, but it does not implement a correction 

grid, is well documented elsewhere [14,15], and is typically not applicable to Commodities data – hence, 

is only mentioned briefly in the remainder of this document.) 

Corrections are either in data-space (e.g., image pixel locations if an image) or in product-space (e.g. 

ground locations if a 3d Point Cloud).  More specifically, the correction grid is directly applicable to an 

underlying grid of elements in the data/product and subsequently interpolated for corrections to arbitrary 

elements in the data/product.  If the data/product corresponds to an image, corrections are not 

corrections to the parameters that define the ground-to-data relationship, such as the polynomial 

coefficients of a ground-to-image function, but are corrections for the effects of their errors and are 

represented directly in image-space. 

 As will be detailed later in this section, the correction grid and its corresponding corrections map directly 

(correspond) to the predictive statistics in the predicted accuracy model, a desirable feature that is both 

practical and that enables (near) optimal corrections corresponding to a wide a variety of error sources.  

And as a reminder, the predicted accuracy model is “tuned” using actual accuracy assessments from 

various specific data/products from the same type of class of data/product to be adjusted. 

The baseline correction grid and the corresponding adjustment process for the Geolocation Product 

Predicted Accuracy Model are documented in detailed in Appendix E and are summarized in a brief 

overview in Section 5.3.3.3.  The baseline correction grid and the corresponding adjustment process for 

the Geolocation Data Predicted Accuracy Model: Measurement-space is further introduced below 

assuming that the data corresponds to an image, as is typical.   The correction grid allows for a more 

accurate image pixel location (line,sample) for all pixels in the image. 

Adjustment of a specific data/product: image 

Prior to summarizing the correction grid, we first describe the pre-adjustment error, its predictive 

statistics, and a desired correction corresponding to an arbitrary location in the data (image).  This is 

summarized in Figure 5.3.3.1-1.    
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Figure 5.3.3.1-1: Representation of an arbitrary image pixel location (𝑚 = [𝑙𝑖𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒]𝑇), its error 

(𝜖𝑚), its a priori or pre-corrected covariance matrix (𝐶), and its desired correction (𝛿𝑚) 

If an object of interest is identified and measured in the image at location 𝑚, (𝑚 + 𝛿𝑚) →≈ 𝑋𝑡𝑟𝑢𝑒, where 

“→ “ represents the image-to-ground function evaluated at a reference elevation and using the input 

( 𝑚 + 𝛿𝑚).   

The correction 𝛿𝑚 is directly in image-space and compensates for the errors in the metadata but does 

not correct the metadata itself.  Typical metadata consists of coefficients of a ground-to-image polynomial 

that was originally fit by the image provider to a physical sensor model’s ground-to-image function, which 

is a function of sensor pose (sensor position and attitude), sensor calibration parameters, etc.  

Further details follow regarding the predictive statistics applicable to image location errors, followed by 

details of the corresponding correction grid: 

Predictive statistics 

The major (a priori) predictive statistics in the Geolocation Data Predicted Accuracy Model: Measurement-

space are defined as follows assuming an image: 

(1) Covariance matrix of the errors in an 𝑚 = [𝑙𝑖𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒]𝑇 image location or coordinates in 

the image:   

𝐶, a (2 × 2) matrix, where 𝐶 ≡ 𝐸{𝜖𝑚𝜖𝑚𝑇}, 𝜖𝑚 is the error in the location 𝑚, and 𝐸{ } is the 

expected value operator. 
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(2) Spdcf of spatial (image-space) correlation of errors between two image locations 𝑚𝑖 and 𝑚𝑗: 

𝜌(∆𝑚𝑖 𝑗), where ∆𝑚𝑖 𝑗 is the 2 × 1 vector difference in image-space between them and 𝜌(∆𝑚𝑖 𝑗) 

is a scalar function.  The latter follows since it is assumed that correlation characteristics are the 

same in both the line and sample image directions in this particular example and generalized later 

in Appendix D. 

 

The predictive statistics represent the error in an arbitrary image location in an arbitrary image of interest 

and are computed as detailed later in this document.  Predictive statistics represent the underlying effects 

of metadata (sensor pose, etc.) errors “averaged” (root-mean-square) across image locations and across 

images from the type or class of images of interest.  The above predictive statistics are applicable to an 

arbitrary image of interest prior to its adjustment. 

Note: although a physical sensor model for the image is not available, if it were available, and if its ground-

to-image function were parameterized by 𝑘 adjustable sensor pose parameters contained in a 𝑘 × 1 

vector 𝑆 and their corresponding 𝑘 × 𝑘 error covariance matrix designated as 𝐶𝑆: 𝐶 ≅

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (
𝜕𝑚

𝑆
)𝐶𝑆 (

𝜕𝑚

𝑆
)
𝑇

, where 𝜕𝑚/𝑆 is the 2 × 𝑘 partial derivative of image location with respect to 

sensor parameters and the average taken over representative image locations across the image.  This note 

assumes that sensor parameter errors are the only errors of significance.  In addition, and in terms of the 

predictive statistics, the above 𝐶 is considered interim until averaged across representative images as 

well.  Partial derivatives are typically relatively invariant across an image, and the (interim) 𝐶 relatively 

invariant across images from a type or class of images of interest, particularly for Small-Sat images. 

 

In addition, we assume that 𝐶 is a diagonal matrix and the mean-value of error is zero (02𝑥1), which are 

the standard assumptions, but not required.  We also assume that optional sensor-mensuration (aka 

“unmodeled”) error and its corresponding predictive statistics are not applicable for simplicity of example.  

Based on these assumptions, the predicted accuracy for an arbitrary image location 𝑚 is represented by: 

(3) The a priori covariance matrix 𝐶 = [
𝜎𝑙𝑖𝑛𝑒

2 0

0 𝜎𝑠𝑎𝑚𝑝𝑙𝑒
2 ], where 𝜎 represents standard deviation 

of error, and from which the scalar accuracy metric 𝐶𝐸90 can also be computed if so desired. 

(4) Furthermore, the relative accuracy between image locations 𝑚𝑖 and 𝑚𝑗 is represented by the 

a priori covariance matrix 𝐶_𝑟𝑒𝑙 = [
𝜎𝑟𝑒𝑙𝑙𝑖𝑛𝑒

2 0

0 𝜎𝑟𝑒𝑙𝑠𝑎𝑚𝑝𝑙𝑒
2 ] = 2 (1 − 𝜌(∆𝑚𝑖 𝑗)) 𝐶, from which the 

scalar accuracy metric 𝑟𝑒𝑙_𝐶𝐸90 can also be computed if so desired.  Note that 𝜎 in 𝐶_𝑟𝑒𝑙 

represents a standard deviation or “sigma” and that  (1 − 𝜌(∆𝑚𝑖 𝑗)) is a scalar that multiplies 

each element of the matrix 𝐶. 

Correction grid 
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A corresponding 𝑝 × 𝑞 rectangular correction grid is illustrated in Figure 5.3.3.1-2 with supporting 

definitions – a 3 × 3 grid is illustrated for clarity:   

 

Figure 5.3.3.1-2: Example of a 3 × 3 (square) correction grid 

An element 𝛿𝑚𝑖𝑗  in the correction grid is a 2 × 1 vector and placed into a 2𝑝𝑞 × 1 correction or 

adjustment vector 𝛿𝑚.  The adjustment vector 𝛿𝑚 is represented as a column vector as is standard for 

vectors in these Technical Guidance Documents but can also be written as follows in order to save space:  

𝛿𝑚 = [𝛿𝑚11
𝑇 𝛿𝑚12

𝑇 . . 𝛿𝑚1𝑞
𝑇 𝛿𝑚21

𝑇 𝛿𝑚22
𝑇 . . 𝛿𝑚2𝑞

𝑇 . . 𝛿𝑚𝑝𝑞
𝑇 ]

𝑇
, 

where the superscript 𝑇 represents vector transpose.  The underlying image location corresponding to 

the correction element 𝛿𝑚𝑖𝑗  is represented as a gray circle in Figure 5.3.3.1-2. 

In addition, per Figure 5.3.3.1-2, the a priori (pre-solution) value for 𝛿𝑚 = 02𝑝𝑞×1 and its corresponding 

a priori error covariance matrix is designated as 𝐶_𝛿𝑚_𝑎𝑝𝑟𝑖𝑜𝑟𝑖.  The a posteriori (post-solution) value and 

its a posteriori error covariance matrix are designated as 𝛿�̂� and 𝐶_𝛿�̂�, respectively. 

The above notation for the elements in 𝛿𝑚 is cumbersome so we redefine 𝛿𝑚 as follows using the more 

generic notation 𝛿𝑋 for an arbitrary correction vector and single indexing for its elements, i.e., 

𝛿𝑋 = [𝛿𝑋1
𝑇 𝛿𝑋2

𝑇 . . 𝛿𝑋𝑛−1
𝑇 𝛿𝑋𝑛

𝑇]𝑇 ≡ 𝛿𝑚,  
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where the correction element  𝛿𝑋𝑖   is a 2 × 1 vector and  𝑖 = 1, . . , 𝑛 = 𝑝𝑞.  For example and regarding 

the correction grid in Figure 5.3.3.1-2, 𝛿𝑋7 = 𝛿𝑚31.  

Correspondingly, we also have:  𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖 ≡ 𝐶_𝛿𝑚_𝑎𝑝𝑟𝑖𝑜𝑟𝑖, 𝛿�̂� ≡ 𝛿�̂�, and 𝐶_𝛿�̂�  ≡ 𝐶_𝛿�̂�. 

The predictive statistics described earlier for errors in image locations 𝑚 naturally map to the a priori (pre-

solution) uncertainty corresponding to the elements in the correction grid.  More specifically, the a priori 

(pre-solution) value or estimate for 𝛿𝑋 is equal to zero (𝛿𝑋 = 02𝑝𝑞×1) and its symmetric and positive 

definite (valid) 2𝑝𝑞 × 2𝑝𝑞 a priori error covariance matrix is equal to: 

(5) 𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖 = 𝐸{𝛿𝑋𝛿𝑋𝑇} = [

𝐶 𝜌(∆𝑚1 2)𝐶

𝜌(∆𝑚2 1)𝐶 𝐶

. . 𝜌(∆𝑚1 𝑝𝑞)𝐶

𝜌(∆𝑚2 3)𝐶 . .
. . . .

𝜌(∆𝑚𝑝𝑞 1)𝐶 𝜌(∆𝑚𝑝𝑞 2)𝐶                   
. . . .
… 𝐶

], 

where ∆𝑚𝑖 𝑗 = (𝑚𝑖 − 𝑚𝑗) is the difference between the underlying image locations 

corresponding to corrections 𝛿𝑋𝑖  and 𝛿𝑋𝑗, respectively, for 𝑖, 𝑗 = 1, . . , 𝑝𝑞.  This follows since the 

corrections are defined as minus the corresponding image location errors. 

For example, if a 2𝑥2 grid of corrections, 𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖 is a 8 × 8  matrix that contains four 2 × 2 block 

matrices.  Furthermore, the cross-block 𝜌(∆𝑚1 2)𝐶 is the 2 × 2 cross-covariance between the a priori 

values 𝛿𝑋1 and 𝛿𝑋2, and the scalar function 𝜌(∆𝑚1 2) multiplies each element of 𝐶. 

The above a priori predictive statistics for the correction grid enable an optimal WLS solution  𝛿�̂� for the 

corrections and computation of its error covariance matrix 𝐶_𝛿�̂� .  The solution is also based on 

measurements from External Data (e.g., control images or ground control points) corresponding to 

conjugate image locations in the data/product (image).  A measurement provides information that 

updates all elements in the correction grid via the a priori spatial correlation specified in the predictive 

statistics – the closer the measurement to a correction element in image-space, the “more direct” the 

information.   

The blue circle in Figure 5.3.3.1-2 represents an arbitrary image location (measurement) to be corrected 

in the image.  The correction is computed using bilinear interpolation of the four surrounding correction 

elements contained in the post-solution correction vector as indicated by the blue arrows. 

The correction grid can vary in size from a 2 × 2 correction grid to approximately a 11 × 11 correction 

grid or larger, and more generally, can be an explicit rectangular grid of similar size.  The number of 

corrections in the correction grid is recommended such that the a priori spatial correlation 𝜌(∆𝑚𝑖 𝑗) 

between adjacent corrections in the correction grid is equal to approximately 0.9 (unit-less) or greater; 

this will decrease for non-adjacent corrections.  In addition, and as a somewhat extreme example, a 1 × 1 

correction grid can also be used in appropriate circumstances, with one corresponding product-wide 

correction and no bilinear interpolation.   

See Appendix D for further details regarding adjustment based on the correction grid and the WLS solution 

for its values as well as detailed examples of its performance.  See TGD 2d (Estimators and their Quality 
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Control) for a general description of WLS and corresponding quality metrics that help to ensure a reliable 

solution for the correction grid.  Appendix D also includes a figure similar to Figure 5.3.3.1-1 of image error 

and its desired correction for further background.  The figure includes additional details regarding true 

versus assumed sensor “pose” (sensor position and attitude) that affects the image metadata.  In addition, 

see Appendix C for details regarding the generation or population of predictive statistics that are assumed 

available and used in the adjustment. 

Example 

Figure 5.3.3.1-3 presents an example of an implementation of the correction grid based on simulated 

image errors and conjugate measurements.  Pre-solution and post-solution errors are assessed across a 

check point grid that also corresponds to the 6x6 correction grid for convenience.  Therefore, for example, 

if the image was 20k x 20k pixels in size, adjacent check point locations are 4k pixels apart.   

 

Figure 5.3.3.1-3:  Pre-adjustment image location errors (blue arrows) and post-adjustment image location 

errors (red arrows) across a check point grid in the image; WLS solution for the correction grid based on 

9 conjugate measurements randomly located across the image (circles); largest image location radial error 

(a blue arrow) equals 42.3 pixels 

Nine conjugate measurements or image locations were generated randomly across the image.  The 

conjugate measurements correspond to the identification/measurement of nine ground control points in 

the image for adjustment.  The ground control points are either surveyed ground points or ground points 
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generated using control imagery.  The conjugate measurements are differenced with the projections of 

the corresponding ground control points to image-space, the latter based on the ground-to-image 

function associated with the image for adjustment.  This difference enables or “drives” the WLS solution 

for the correction grid. 

Note: if control imagery is used, ground points are typically generated using stereo control images or a 

single control image with an accurate reference elevation. 

Although not explicitly illustrated in the above figure, a post-solution correction error for an arbitrary 

image location in the product is approximately equal to the bilinear interpolation of the corresponding 

four red arrows in the check point grid.   

See Appendix D for further details regarding adjustment, including other examples and also ensemble 

statistics across hundreds of simulated realizations of the image and its errors as opposed to the explicit 

results for one realization of the image and its errors as presented in Figure 5.3.3.1-3 and applicable 

operationally.  Note that the use of random locations corresponding to the measurements in the image 

was implemented for the purpose of simulation only, including the computation of sample statistics across 

numerous realizations of the image and its errors.  Operationally, locations are typically dispersed evenly 

across the image’s AOI or footprint as much as possible as dictated by the content of the image. 

Caveat regarding other possible correction approaches 

Another possible class of corrections consists of parameters that define a transformation (typically an 

affine or related transformation) from an arbitrary element of the data/product (e.g., 2d image-

coordinates) to a correction directly applicable to that element.  Corrections based on such a 

transformation can more directly correct for the effects of sensor pose errors (position errors and in 

particular, attitude or rotation errors) on the ground-to-data/product relationship (e.g., ground-to-image 

polynomial) than can a correction grid.  This is primarily relevant for Commodities data that corresponds 

to images, such as Small-Sat images.  Let us term the above transformation “affine” for the remainder of 

this section for specificity. 

The appropriate predictive statistics (a priori error covariance matrix) corresponding to the parameters 

(coefficients) of the affine transformation do not directly map to the predictive statistics in the predicted 

accuracy model and a mapping or correspondence between the two, once derived, will only be an 

approximation.  In addition, the applicability of such a transformation is not known a priori for a given 

type of class of data/product in general, since its ground-to-image function (metadata) and corresponding 

errors typically reflect additional value-added processing during data/product generation, such as image 

registration or possibly multiple image registrations, with accuracy that can vary significantly from 

data/product to data/product.   

However, it is true that if the specific data/product to be adjusted does have errors consistent with the 

affine transformation, a well-modeled adjustment based on solving for the coefficients of such a 

transformation will do better than a correction grid, particularly if the ground control points (or its 

equivalent) are relatively sparse and are not geometrically diverse over the image.  In contrast, the 
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correction grid can account for a more varied collection of errors, including those represented by the 

affine transformation, albeit with somewhat less fidelity.  See Appendix D for further details and examples 

of performance. 

The above comments are also generally applicable to yet another class of corrections that define a 

transformation: a low order polynomial from either ground-space or image-space to corrected image-

space.  Again, the appropriate predictive statistics (a priori error covariance matrix) corresponding to the 

coefficients of the low order (correction) polynomial do not directly map to the predictive statistics in the 

predicted accuracy model and a mapping or correspondence between the two, once derived, will only be 

an approximation. 

For example, if there are four polynomial coefficients, an offset and a rate correction for each image 

coordinate, with a summed effect corresponding to a correction to each image coordinate, predicted 

absolute accuracy will be a function of the location of a pixel in the image.  In addition, predicted relative 

accuracy between two locations is dependent on both of their locations in the image, not just the distance 

between them, assuming that the rate uncertainties (sigmas) are different for the two image coordinates 

components (x vs y, or alternatively, line vs sample).   

Of course, if only offset coefficients are applicable to the (correction) polynomial, absolute predicted 

accuracy is invariant of the location of a pixel in the image and predicted relative accuracy is either equal 

to zero or only a function of horizontal distance between two locations if sensor-mensuration error is 

modeled too.  However, a sparse correction grid is virtually equivalent if a priori spatial correlation is 

specified as high across the image via the spdcf. 

In summary, due to its generality as well as its reasonable performance, a correction grid is recommended 

for the adjustment of Commodities-based data (e.g., images) that have little or no accuracy pedigree 

accompanying the data as provided by the vendor, i.e., data that has a populated Geolocation Data 

Predicted Accuracy: Measurement-space generated by the NSG.  

5.3.3.2 Full Motion Video 

A predicted accuracy model for Full Motion Video (FMV) is an extension of the Geolocation Data Predicted 

Accuracy Model: Image-space.  The predictive statistics that are already included in the latter are assumed 

applicable to each image in the FMV image-sequence as a simple but reasonable assumption.  However, 

the extension to FMV also requires an additional predictive statistic: the spdcf for the temporal correlation 

of errors between images in the image-sequence.  This is illustrated conceptually in Figure 5.3.3.2-1. 
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Figure 5.3.3.2-1: FMV image sequence and its corresponding predictive statistics representing predicted 

accuracy of the images; adjacent images in time have overlapping ground footprints (not depicted in 

figure) 

The adjustment model (section 5.3.3.1) is augmented as well for FMV.  Either corrections correspond to 

the summation of the corrections in the (baseline) correction grids corresponding to each image in the 

sequence, or they correspond to the summation of corrections in the correction grids corresponding to a 

subset of the images in the sequence, with interpolation between these correction grids for corrections 

applicable to arbitrary images in the sequence.  Note that measurements containing external information 

directly applicable to a correction grid in one image are also related to the correction grids for all other 

images in the sequence via the a priori temporal correlation between it and the other images as specified 

by the corresponding temporal spdcf, a function of the delta time-of-applicability between image-pairs.  

This relationship is automatically exploited using a proper solution process, such as a correctly 

implemented WLS adjustment, which was previously discussed in Section 5.3.3.1 but requires 

augmentation in order to contain the sequence of correction grids for FMV. 

A successful adjustment process, regardless the type of adjustable parameters or the estimator used to 

solve for them, requires the automatic/automated measurement of conjugate geolocations in adjacent 

image frames (“tie points”) and typically in control imagery as well (or photo-identifiable ground control 

points) for good resultant accuracy.   This can be a challenge.  For example, Figure 5.3.3.2-2 presents one 

frame in an FMV sequence which includes the color-coded status of the frame’s current tie points that 

are automatically and dynamically “tracked”, i.e., identified and measured in this frame and previous 

frames [7].  Tie-points are dropped and new ones added (tracked) due to changing imaging geometry and 

other challenges.  In this particular example, WLS was implemented in order to solve for adjustable 

parameters associated with a physical sensor model.   
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Figure 5.3.3.2-2: Tie points automatically measured (“tracked”) in frame #36 and their color-coded image-

location and status: continues to be tracked (green), dropped this frame (red), track initialized this frame 

(blue); quadcopter motion imagery frame with graphic overlay 

More applied research is recommended for both tie point tracking and the implementation of adjustable 

parameters associated with correction grids.  Aspects of the latter include applied research into WLS 

implementation for reasonably high throughput for relatively long image sequences (use of small grid size, 

diagonal covariance matrices, etc.).  A Kalman filter implementation should also be considered that solves 

for the equivalent of grid corrections in near-real time and consistent with the predictive statistics 

contained in the Geolocation Data Predicted Accuracy Model: Image-space (FMV). 

5.3.3.3 Mixed Gaussian Random Field 

A Mixed Gaussian Random Field (MGRF) is considered a companion component to the Geolocation 

Product Predicted Accuracy Model (Section 5.3.2.1).  More specifically, it is an option to represent or 

“contain” the latter’s entire a priori uncertainty model (predictive statistics).  It allows for the 

representation of predicted accuracy that can vary over the product (realization).  If an MGRF is not 

included, the “standard” predicted accuracy model is applicable as summarized in Section 5.3.2.1 and 

detailed in Appendix B. 

An MGRF is rigorous, flexible, as well as practical, and is considered ideal as the core element of a 

Geolocation Product Predicted Accuracy Model.  It is also practical in the sense that it only requires a few 

predictive statistics which are easily contained in the product’s metadata or its equivalent.  These statistics 

are also readily “mapped” to either the predicted accuracy of a geolocation of interest or to the predicted 

relative accuracy between geolocations of interest.  The MGRF also enables an appropriate adjustment 

model. 
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An MGRF and the Geolocation Product Predicted Accuracy Model in which it resides correspond to a 

particular type or class of 3d geolocation product, typically categorized by vendor/producer, type of 

product (e.g. EO-derived 3d Point Cloud), date-range, and possibly general scene content (e.g., urban, 

agriculture, etc.).  The contents of the MGRF are tuned by previous accuracy assessments of products 

from the same type or class of 3d geolocation product. 

An MGRF consists of a collection of specified partitions over the geolocation product’s Area of Interest 

(AOI) or ground “footprint”.  Each geolocation in the product is associated with one and only one partition.  

In addition, an MGRF also consists of a collection of specified random fields.  Each partition in the MGRF 

corresponds to a specified subset of the random fields.  This provides a method to group geolocations 

(points) with similar predicted accuracy characteristics as further described below. 

A random field is a collection of spatially correlated and Gaussian distributed random errors 

corresponding to the underlying geolocations in the product or MGRF.  The random field’s predictive 

statistics make-up the a priori statistical model for these errors.  The error in a geolocation associated 

with a particular partition in an MGRF consists of a sum of independent (uncorrelated) errors, one from 

each of the partition’s specified random fields.  As such, an MGRF can also be considered a mixture of 

random fields.  An example of a single random field is presented graphically later in this section for further 

insight (Figure 5.3.3.3-2).   

More specifically, an MGRF contains: (1) a description of each partition, (2) the a priori probability of 

occurrence of each partition, (3) a list of random fields corresponding to each partition, and (4) the 

predictive statistics defining each random field.  The latter consist of the mean-value of error, the 

covariance matrix about this mean-value, and a strictly positive definite correlation function (spdcf) that 

specifies the spatial correlation of errors within the same realization of the random field.  The a priori 

probability of occurrence for a partition corresponds to the approximate probability that an arbitrary 

geolocation in the product is associated with that partition. 

There is one and only one MGRF associated with a product.  A typical MGRF has between 1-5 partitions 

and the same number of random fields.  The baseline or default “mapping” of random fields to partitions 

is as follows and assumes 𝑚 paritions and 𝑚 random fields: 

Partition 1 corresponds to random field 1, and partition 𝑖, 1 < 𝑖 ≤ 𝑚, corresponds to random field 1 plus 

random field 𝑖.  Random field 1 represents systematic errors applicable across the entire product, whereas 

random field 𝑖 > 1 represents additional additive errors associated with geolocations that were difficult 

to generate due to various issues.  For example, if an EO-generated Point Cloud, geolocations 

corresponding to “melted roof top edges” or possibly corresponding to crop anomalies due to the effect 

of “corn rows” on the measurement of conjugate image points when generating the Point Cloud.  The 

predicted accuracy of geolocations associated with or “in” partition 1 is better (smaller value indicating 

less uncertainty) than for geolocations in the other partitions.  Figure 5.3.3.3-1 graphically illustrates the 

concept of the baseline Random Field-to-Partition Mapping assuming three partitions: 
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Figure 5.3.3.3-1: Baseline Random Field-to-Partition Mapping assuming an MGRF with three partitions 

Regardless the particular random field-to-partition mapping, the first partition is the “nominal” partition 

defined as all geolocations in the product not associated with any other partition, and is typically 

applicable to most of the geolocations in the product.  The other partitions are simply defined textually.  

For example, if the product corresponds to an EO-derived 3d Point Cloud a non-nominal partition’s 

description might be all geolocations corresponding to “melted roof-top edges”.   (See Appendix G for an 

overview of melted roof-top edges.) 

Typically, the geolocations associated with a non-nominal partition are not explicitly identified ahead of 

time prior to product dissemination.  If such a geolocation is of interest to the “down-stream” user, its 

corresponding partition is either identified by the user based on the partitions’ textual descriptions and 

the user’s visualization of the product (optionally, by an automatic/automated process) or is designated 

as unknown by the user.   As detailed in Appendix E, the MGRF contains both the predicted accuracy for 

geolocations known to be in a particular partition and the predicted accuracy for arbitrary geolocations in 

the product, i.e., those geolocations in an unknown partition.  Computation of the latter utilizes the a 

priori probability of occurrence of each partition which sum to 1. 

The predictive statistics for a geolocation of interest are “higher fidelity” if its associated partition is known 

versus unknown.  Also, it is not unusual for certain types or classes of geolocation products to have only 

one partition specified in the MGRF, the nominal partition, which is applicable to all geolocations in the 

product, by definition.  As such, identification of a partition is moot.  A relevant example corresponds to 

some types or classes of LIDAR-derived 3d Point Clouds where predicted accuracy is reasonably 

represented as invariant across the product.  The use of only one partition is equivalent to the non-use of 

an MGRF, i.e., corresponds to the “standard” predicted accuracy model for a geolocation product as 

detailed in Appendix B. 
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See TGD 1 (Overview and Methodologies) for an introduction to random fields in general and Appendix E 

for a thorough description of the MGRF for representation of predicted accuracy for a geolocation 

product.  Appendix E also includes detailed quantitative examples and plots illustrating concepts, and also 

includes details of product adjustment or fusion based on MGRF.  Some of these concepts are also 

summarized in the remainder of this section:    

 The “Spatial correlation” summary provides insight into the concept of a random field and the 

spatial correlation of errors. 

 The “Product adjustability” summary states that a product can be adjusted in a practical and near-

optimal manner based on the use of MGRF, or more generally, fused with other products, and 

includes a summary of subsequent benefits. 

 The “Scalar predicted accuracy metrics” summary provides an example of an MGRF with 

corresponding partitions and their associated random fields.  It should help to clarify the above 

description of an MGRF, which may seem somewhat complicated at first reading due to the 

various terminology and interrelationships that were introduced.  The example also details 

various scalar accuracy metrics, such as CE90, applicable to geolocations known to be associated 

with a particular partition as well as to arbitrary geolocations in the product (partition unknown).  

It also discusses optional additions to the MGRF (product) metadata or its equivalent. 

Spatial correlation 

The geolocation errors in a geolocation product are spatially correlated as represented by the spdcf 

corresponding to each random field that is specified as part of the MGRF representation.  Spatial 

correlation has a significant effect on the relative accuracy between two geolocations in the same product 

realization.  The higher the correlation, the better the predicted relative accuracy corresponding to the 

statistical cancellation of similar errors.  Correlation of geolocation errors corresponding to geolocations 

in different random fields in the same product, as well as to all geolocation in different products 

(realizations) of the same type or class of geolocation product, are reasonably assumed uncorrelated.  

Note that all random fields are assumed to be (wide-sense) homogeneous, analogous to (wide-sense) 

stationary stochastic processes.  That is, a random field’s predictive error statistics are not a function of 

the actual value of the geolocation(s), other than their difference for relative errors.  A random field is 

also considered multi-variate, as it corresponds to 3d geolocation errors in general. 

Figure 5.3.3.3-2 presents an example of a single Gaussian random field of horizontal geolocation errors 

corresponding to a specific 3d geolocation product or realization that contains a collection of 3d 

geolocations (e.g., 3d Point Cloud) for further insight into the concept of a random field.  Although 

geolocation errors are 3d, only horizontal geolocation errors are plotted for clarity. 
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Figure 5.3.3.3-2: Realization of a Random Field; quiver plot of simulated horizontal errors (2d vectors) 

contained in a random field corresponding to a portion of a 3d geolocation product; errors are in meters 

and the plot is self-scaled; red 2d vectors are interpolated errors between geolocations 

The errors in Figure 5.3.3.3-2 are represented across a horizontal grid corresponding to a local tangent 

plane in the product, where each horizontal error is located at the horizontal coordinates of its 

corresponding 3d geolocation.  There is a “medium” level of spatial correlation of errors between most 

geolocations in this example, and a “high” level of correlation (similarity of errors) between nearby 

geolocations.  This is consistent with a priori spatial correlation evaluated as a function of distance in the 

corresponding spdcf. 

Product adjustability 

Appendix E describes the optional correction grid-based adjustment of the MGRF (product), and more 

generally, the fusion of the product with other products.  Fusion not only improves product accuracies, 

but ensures the consistency of geolocations across the products.  It simultaneously solves for corrections 

to the systematic errors in each of the products involved and then allows for the correction of each 

geolocation in each product.  Reference [2] provides an “easy-to-read” overview of the MGRF and fusion. 

Adjustment based on a correction grid is performed in conjunction with the predictive statistics (error 

covariance matrices and spdcf) in the MGRF that are used to represent the a priori predicted accuracy of 

the corrections, their values equal to zero prior to the adjustment.  Such an adjustment can successfully 
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correct for geolocation errors that are very general, typically due to both the underlying sensors/metadata 

in the product generation process as well as the generation process itself.  Errors consistent with a more 

“specific” or “deterministic” adjustment model, such as the coefficients of a 3d geolocation-to-corrected 

3d geolocation transformation, can be absorbed by a correction grid but many types of errors consistent 

with MGRF predictive statistics cannot be absorbed by such a transformation.  

The adjustment based on a correction grid for a geolocation product is very similar to an adjustment based 

on a correction grid for an image that was described earlier in Section 5.3.3.1 and illustrated by example 

in Figures 5.3.3.1-2 and 5.3.3.1-3.  Primary differences correspond to: (1) 3d geolocations vs 2d image 

locations and their corrections, and (2) the predictive statistics for the geolocation product correspond to 

an MGRF as described above, but the predictive statistics for the image technically do not.  However, 

regarding the latter, the predictive statistics for the image do correspond to a random field (possibly two 

random fields if sensor-mensuration errors are modeled separately), but not to different partitions across 

the image.   

The above adjustment “scenario” for a geolocation product is also predicated on the non-availability of 

high-fidelity “complete sensor model” containing both reliable predicted accuracy and a product-specific 

adjustment model which are generated when the product itself is generated and subsequently made 

available to the NSG, such as GPM for 3d Point Clouds as discussed earlier in Section 5.2.3.  However, such 

a high-fidelity complete sensor model is currently not available for most External Data, and for geolocation 

products in particular.  Hence the use of MGRF-based predictive statistics and the optional adjustment of 

the product based on a correction grid as described in this section of the document: a practical yet 

theoretically rigorous approach. 

Scalar predicted accuracy metrics 

Appendix E also details the recommended metadata or its equivalent associated with the MGRF (product), 

and Appendix E contains associated MATLAB pseudo-code for its generation.  This includes the generation 

of scalar accuracy metrics CEXX and LEXX corresponding to horizontal and vertical predicted accuracy, 

respectively, at probability levels XX=90, 99, and optionally 999 (99.9 %), for both geolocations within a 

known partition and for arbitrary geolocations within the product.  These scalar accuracy metrics are 

simple but practical and informative metrics.  Correspondingly, their computations are detailed in this 

document and they are recommended for inclusion in the product’s predictive statistics and contained in 

the product’s metadata or its equivalent.   They are particularly suited for the support of actionable 

intelligence. 

A representative example involving the scalar accuracy metrics corresponding to an MGRF (product) with 

two partitions is summarized in Table 5.3.3.3-1.   Although geolocation errors are 3d (x,y,z), only horizontal 

errors (x,y) and their corresponding scalar accuracy metrics are detailed in this example for ease of 

illustration.  The scalar accuracy metrics are Circular Error CEXX, the radius of a circle such that horizontal 

radial error is less than or equal to CEXX with probability XX%.  Three values of XX are evaluated: XX=90 

(90%), XX=99 (99%), and XX=999 (99.9%).   
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Table 5.3.3.3-1: A priori probability of occurrence and scalar accuracy metrics for partitions 1 and 2, and 

scalar accuracy metrics for arbitrary geolocations (partition unknown) 

 

The a priori probability that a geolocation is in partition 1, the nominal partition, is 0.90.  The a priori 

probability that a geolocation is in partition 2 is 0.10.   The errors in the geolocations in partition 1 

correspond to random field 1.  The errors in the geolocations in partition 2 correspond to the sum of two 

independent errors, one from random field 1 and one from random field 2 in this example. 

Both random field 1 and random field 2 correspond to horizontal geolocation errors with an a priori mean-

value of error equal to zero (02×1); however, the a priori uncertainty (standard deviations) of errors in 

random field 2 are three times larger than that for random field 1.  More specifically, the a priori 

covariance matrices corresponding to horizontal errors in random fields 1 and 2 are equal to:  

[
4 0
0 4

] = [2
2 0
0 22] meters-squared and  [

36 0
0 36

] = [6
2 0
0 62] meters-squared, respectively. 

Correspondingly, the a priori mean-value of error for geolocations residing in both partition 1 and 2 remain 

zero.  However, the corresponding covariance matrices for geolocations in the partitions are equal to: 

[
4 0
0 4

] = [2
2 0
0 22] meters-squared for geolocations in partition 1 which contains random field 1, and   

[
4 0
0 4

] + [
36 0
0 36

] = [
40 0
0 40

] ≅ [6.32 0
0 6.32] meters-squared for geolocations in partition 2 which  

contains random field 1 and random field 2.   

The above mean-values and covariance matrices for the partitions were used to compute the partitions’ 

scalar accuracy metrics in Table 5.3.3.3-1 based on an assumed Gaussian distribution of corresponding 

geolocation errors.  Their Gaussian distribution follows since errors are either from random field 1 or the 

sum of errors from random fields 1 and 2, all of which are assumed to be Gaussian distributed.  However, 

the computation of the scalar accuracy metrics corresponding to an arbitrary geolocation requires 

additional information: the partitions’ a priori probability of occurrence and the fact that relevant errors 

are considered to correspond to a probabilistic mix of errors from both partition 1 and partition 2.  

Correspondingly, the distribution of errors is not Gaussian distributed for this case.  Appendix E details 

appropriate methods for the computation of the scalar accuracy metrics corresponding to both 

geolocations in known partitions and to arbitrary geolocations.  

Partition prob occur CE90 (meters) CE99 (meters) CE999 (meters)

1 0.9 4.3 6.1 7.5

2 0.1 13.6 19.2 23.5

arbitrary n/a 5.2 13.6 19.2
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Partition 2 corresponds to geolocations that were “problematic” during product generation, i.e., had a 

large source of error (random field 2) in addition to or combined with the product-wide source of error 

associated with partition 1 (random field 1).  The following comments also apply: 

 Table 5.3.3.3-1 and the above description of corresponding partitions and underlying random 

fields only address absolute accuracy.  Relative accuracy is also dictated by spatial correlation as 

specified by the spdcf associated with each random field.  See Appendix E for further details 

regarding relative accuracy and its computation and Appendix F for corresponding MATLAB 

pseudo-code. 

 Although the above a priori covariance matrices are diagonal with equal variances, they are more 

generally arbitrary covariance matrices (symmetric and positive definite).  See Appendix E for 

further details. 

 All scalar accuracy metric and underlying predictive statistic values are fictitious in this example 

and for the purpose of illustration only.  

Figure 5.3.3.3-3 presents a graphical summary of a subset of the scalar accuracy metrics presented in 

Table 5.3.3.3-1.  CE90 (blue) and CE99 (blue-dash) correspond to partition 1 and CE90 (red) and CE99 (red-

dash) correspond to arbitrary geolocations (partition unknown).  Two thousand independent random 

samples of error in correct proportion from partition 1 (blue dots) and partition 2 (magenta dots) based 

on their a priori probability of occurrence are also included in the figure for further insight.   
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Figure 5.3.3.3-3:  Based on an MGRF representation of Predicted Accuracy for a specific geolocation 

product:  𝐶𝐸90 (radius of blue circle) and 𝐶𝐸99 (radius of blue-dash circle) for geolocations known to 

reside in the nominal partition, parition1; 𝐶𝐸90 (radius of red circle) and 𝐶𝐸99 (radius of red-dash 

circle) for arbitrary geolocations in the product (partition unknown); blue and magenta dots correspond 

to a total of 2000 simulated independent random samples in correct proportions from partitions 1 and 

2, respectively. 

The CE90 and CE99 circles corresponding to partition 2 are not included in the figure for clarity.  However, 

due to its low probability of occurrence but large uncertainty relative to partition 1, partition 2 has little 

effect on CE90 for an arbitrary geolocation in the product but does have a significant effect on its CE99, 

as seen in the figure.  That is, the red circle (C90 arbitrary) is only slightly larger than the blue circle (CE90 

partition 1), but the red-dash circle (CE99 arbitrary) is significantly larger than the blue-dash circle (CE99 

partition 1) due to the possible influence of partition 2 on an arbitrary geolocation. 

The corresponding scalar accuracy metrics enable actionable intelligence:  If a geolocation of interest is 

known to be in the (nominal) partition 1, we know that it is only 1% probable that its horizontal 

geolocation error is greater than 6.1 meters, but if the partition in which the geolocation resides is 

unknown, we know that it is 1% probable that its horizontal geolocation error is greater than 13.6 meters.  

This significant increase in CE99 is due to the 10% probability that the geolocation may be associated with 

partition 2.    

The following additional comments apply: 
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 If partition 2’s a priori uncertainty were significantly greater than approximately three times that 

of partition 1, the increase in CE99 for an arbitrary geolocation would be even larger and more 

dramatic than shown in Figure 5.3.2.6-3.   On the other hand, if partition 2’s a priori probability of 

occurrence were significantly larger, CE90 for an arbitrary geolocation would increase 

significantly. 

 If the geolocation of interest were known to correspond to partition 2, the partition 2 scalar 

accuracy metrics would be directly applicable (see Table 5.3.3.3-1). 

 As a reminder, the scalar accuracy metrics are predictive statistics corresponding to predicted 

accuracy; they are not sample-based scalar accuracy metrics.  Also, each of the simulated 

independent random samples illustrated in Figure 5.3.3.3-3 correspond to a different realization 

of the product.  

 Figures similar to Figure 5.3.3.3-3 are readily generated during the computation of scalar accuracy 

metrics per Appendix E and Appendix F, and may be considered as optional metadata content for 

additional insight regarding actionable intelligence and other factors of interest to the “down-

stream” user.  Note that independent samples of error in similar figures become even more 

interesting (non-symmetric pattern or distribution) when the corresponding covariance matrices 

have non-zero off-diagonal elements and/or the corresponding mean-values are not equal to zero 

(non-typical) – see TGD 2D for various examples involving up to 3 partitions in the MGRF.  

It is recommended that both CE90 and CE99 are included in the product metadata or its equivalent for 

each partition as well as for arbitrary geolocations (partition unknown).  In addition, although the 

underlying distribution for geolocation errors corresponding to geolocations in a specific partition are 

assumed to be Gaussian distributed, this is not true for the distribution of errors corresponding to 

arbitrary geolocations.  Therefore, as detailed in Appendix E, it is also recommended that CE999 (99.9%) 

be included for arbitrary geolocations in order to capture any possible effects of very low probability-of-

occurrence partitions with very large predicted errors.  Of course, regardless which scalar accuracy metrics 

are included in the metadata or not, the various parameters and predictive statistics that actually define 

the MGRF and that were detailed earlier are always included.  As such, and although not as convenient, a 

“down-stream” user or application can then compute any desired scalar accuracy metrics of interest 

based on the equations of Appendix E and/or the pseudo-code in Appendix F. 

As a final comment regarding MGRF metadata: As discussed earlier, a geolocation of interest is known to 

correspond to a particular partition if it is identified as such by the “down-stream” user of the product or 

possibly by an automatic/automated process.  It could also be identified as such if it were within one of a 

set of geographic boundaries optionally computed by the product provider and/or NSG Quality 

Assessment and included in the product’s metadata or its equivalent.  Also, as a reminder, identification 

of a partition is not applicable if the MGRF has only one (product-wide) partition. 

5.3.4 Guide to detailed examples of accuracy assessment and predicted accuracy models 

Further details, applications, and examples of accuracy assessment models, predicted accuracy models, 

and related components are “pointed to” in Table 5.3.4-1:    
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Table 5.3.4-1: References to further details of accuracy assessment and predicted accuracy models and 

their applications, including examples, contained in this document  

 

A 3d Point Cloud is an example of the applicability of Sections B.1-B.3 and (appendix) E in the above table.  

A Small-Sat image is an example of the applicability of Sections C.1-C.2, C.4, and (appendix) D in the above 

table. 

The three categories of predicted accuracy models defined earlier in Sections 5.3.2.1, 5.3.2.3, and 5.3.2.4 

are also discussed in v1.1 of TGD 1 (Overview and Methodologies) at a summary level, including illustrative 

graphics, but using slightly different terminology more generally termed “methods”.  The appropriate 

mapping between these two documents is presented in Table 5.3.4-2: 

 
 

 

 

 

 

Section  Model Contents Population User

(or related processing) (generation) Applications

B.1 Geolocation Product x x

Accuracy Assessment

B.2 Geolocation Product x x

Predicted Accuracy

B.3 Applications of above x

models

C.1 Geolocation Data x x

Accuracy Assessment

C.2 Geolocation Data x x

Predicted Accuracy

C.4 Applications of above x

models

D Geolocation Data x

adjustment 

E Geolocation Product x x x

MGRF and adjustment

5.3.5.3 Geolocation Data x

Accuracy Assessment
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Table 5.3.4-2:  The relationship between predictive accuracy model definitions and corresponding 

methods in TGD 1 

 

5.3.5 Analysis techniques for the population of models 

Key to the appropriate population of both the accuracy assessment model and the predicted accuracy 

model is the generation of appropriate sample error statistics.  More specifically, these statistics directly 

populate the accuracy assessment model, with corresponding results used to select and tune the 

appropriate predicted accuracy model.  This is true for all of the models defined in Sections 5.3.2.1 through 

5.3.2.5.   

Appropriate sample error statistics are generated per the underlying principles presented in TGD 2b 

(Sample Statistics) and are summarized in Section 5.3.5.2.  However, their generation relies on samples of 

data/product geolocation error, which in turn requires the availability of geolocation “ground truth” as 

discussed below:   

5.3.5.1 Ground truth and various alternatives 

Ground truth is used to generate error samples by subtracting ground truth geolocations or their 

equivalent from corresponding product geolocations or their equivalent.   

More specifically, ground truth (3d) is used to generate 1d, 2d, or 3d error samples in support of an 

accuracy assessment for a geolocation product.  For example, a 3d error sample (meters) is generated by 

subtracting a 3d ground truth geolocation from a corresponding conjugate 3d geolocation that is 

measured/identified in the 3d geolocation product; corresponding sample statistics populate an 

applicable Geolocation Product Accuracy Assessment Model.   

Ground truth (3d) is also used to generate 2d error samples in support of an accuracy assessment for 

geolocation data.  For example, a 2d error sample (pixels) is generated in image-space for a Small-Sat 

image by first measuring a conjugate 2d image location of a ground-truth geolocation identified in the 

image.  The 3d ground truth geolocation is then projected to image-space using the basic sensor model 

and then subtracted from the measurement; corresponding sample statistics populate an applicable 

Geolocation Data Accuracy Assessment Model.   

TGD 2f name of model TGD 1 name of methed

section # section #

5.3.2.1 Geolocation Product Predicted Accuracy Model Appendix B   Geolocation Equivalent Method 

5.3.2.3 Geolocation Data Predicted Accuracy Model: Appendix B State Vector Direct Method 

Sensor-space

5.3.2.4 Geolocation Data Predicted Accuracy Model: Appendix B Sensor Direct Method 

Measurement-space
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(Alternatively, the resultant error is projected to a plane (2d in meters) perpendicular to the image locus 

(image line-of-sight, if an EO image) and that corresponds to the elevation or vertical component of the 

3d ground truth point.)   

Regardless the specific details for the generation of an error sample, corresponding sample statistics 

populate an applicable accuracy assessment model.   

Ground truth can be directly available in some cases, or can be generated from corresponding highly 

accurate “control” imagery in other cases.  The accuracy of “ground-truth” needs to be reasonably better 

than the data/product being assessed per TGF 2c (Specification and Validation of Accuracy and Predicted 

Accuracy).   

However, sometimes ground truth is not available, not uncommon for some types of External Data, 

particularly corresponding to remote or restricted parts of the world.  In this case, ground truth or its 

equivalent may be able to be generated by other means which take advantage of independent 

information from overlapping data/products as discussed in Appendix H.  There are three general 

scenarios regarding the overlapping data/products: 

(1) Data/products generated using the same sensor 

(2) Data/products from the same type or class of data/products 

(3) Data/products from different types or classes of data/product 

The above approach is not ideal as compared to obtaining surveyed ground-truth or its equivalent, but is 

better than no ground truth at all.  Subsequent accuracy assessments based on this ground truth or its 

equivalent should note the generation method as well as the estimated accuracy of such ground truth.  

Section 5.3.5.2 now goes on to present an overview and summary of sample error statistics, and Section 

5.3.5.3 presents a real-world example and a related issue: 

5.3.5.2 Sample error statistics 

Sample error statistics are key to the meaningful population of accuracy assessment models and the 

subsequent “tuning” or population of corresponding predicted accuracy models, the latter based on both 

the overall characteristics as well as the detailed quantitative values of the sample statistics.  The sample 

statistics can correspond to 2d errors for data (e.g., image location errors for an image), or to 1d errors 

(vertical), 2d errors (horizontal), and/or 3d errors for a product. 

Sample error statistics generally consist of the following a posteriori (sample) statistics: mean-value of 

error, error covariance matrix, relative error covariance matrix, auto-correlation values (approximate 

spdcf values), various scalar accuracy metrics, as well as the number of independent samples and the total 

number of samples used in their calculations and directly related to the statistical significance or reliability 

of the sample statistics.  The computation of predictive statistics is based on underlying sample statistics. 
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The above sample statistics and their predictive statistics counterparts are consistent with the practical 

representation of errors as a wide-sense homogenous random field in an arbitrary realization of the type 

or class of data/product of interest.    

Correspondingly, predictive statistics are applicable to an arbitrary realization of the data/product; the 

predicted mean-value of error and the error covariance matrix are both assumed constant regardless the 

absolute locations of the elements of interest in the data/product; e.g., applicable to errors in image 

locations regardless their absolute locations in the image.  In addition, the spatial correlation between the 

errors in two elements in the data/product is assumed solely a function of the distance between them, 

such as the distance between two geolocations in a product or the distance between two image locations 

in an image as represented in image-space.  Also, the mean-value of relative errors is assumed zero and 

distance bins are characterized by the distance between two elements, not their absolute locations.  In 

addition, as detailed later, the predicted mean-value of error is not only assumed constant, but is assumed 

equal to a value of zero consistent with an assumed “bias free” generation process, unless specifically 

demonstrated otherwise. 

The above predictive statistics are relative to an arbitrary realization of the data/product, not specific 

realizations over which sample statistics are computed.  For a specific realization, the sample mean-value 

will typically equal a significantly non-zero value due to the spatial correlation of errors within the 

data/product, but when averaged over numerous specific realizations, the average sample mean-value 

will approach zero assuming no system-wide bias, i.e., no bias in the data/product generation process.  

Hence, the applicability of a predicted mean-value of error equal to zero corresponding to an arbitrary 

data/product realization, past or future.  And although the predicted mean-value is equal to zero, the 

predicted error covariance matrix will still capture the appropriate variability of errors both within and 

across arbitrary realizations. 

Sample statistics should be computed for an accuracy assessment corresponding to multiple independent 

realizations of the data/product. In addition, (sub) assessments corresponding to each of these 

realizations also involve multiple error samples.  However, the latter are not independent error samples, 

but are required and desired as such in order to quantify the spatial correlation of errors in a realization 

which is directly related to relative accuracy.  Recall that the errors in different realizations of the 

data/product are assumed independent or uncorrelated, but errors in the same realization of the 

data/product are spatially correlated.     

Note: The above spatial correlation is more correctly termed “intra-data/product spatial correlation”, as 

it is applicable to errors in the elements of the same data/product realization; e.g., the errors in two 

different image locations in the same image.  The correlation applicable to errors in the elements from 

two different data/product realizations is termed “inter-data/product correlation”, and is assumed zero 

unless specifically designated otherwise, such as corresponding to temporal correlation for two same-

pass images.  The two different types of data/product correlations also correspond to representation by 

corresponding spdcf, simply termed “spdcf” for spatial correlation and “temporal spdcf” for same-pass 

images in this document. 
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Absolute accuracy 

The sample mean-value of error is computed over all samples of error for each data/product realization, 

and the sample error covariance matrix is computed for each data/product realization relative to the 

corresponding sample mean-value.  Thus, if there are 𝑚 realizations of the data/product available, there 

are 𝑚 pairs of sample mean-values and sample error covariance matrices computed for information.  In 

addition, the “ensemble” sample mean-value of error is computed over all samples of error over all 

realizations, and the “ensemble” sample error covariance matrix is computed over all samples of error 

over all realizations and relative to the ensemble sample mean-value.  Again, these are computed for 

information only.  Finally, the “representative” sample error covariance matrix is computed over all error 

samples over all realizations and relative to an assumed mean-value of error equal to zero.  The 

representative sample error covariance matrix is equivalent to the (vector) root-mean-square error over 

all error samples over all realizations.   

All of the above sample mean-values of error and sample error covariance matrices are contained in the 

populated accuracy assessment model, along with the corresponding number of data/product 

realizations, the number of corresponding error samples for each realization, and other supporting details.   

The predicted error covariance is set equal to the above representative sample error covariance matrix 

and the predicted mean-value of error is set equal to zero, and both of these predictive statistics are 

contained in the corresponding populated predicted accuracy model.  

The above is consistent with the following baseline approach that was discussed earlier: (1) the sample 

mean-value of error for each data/product realization is significantly non-zero due to the spatial 

correlation of errors in the same realization, and (2) these mean-values of error vary in both sign and 

magnitude over different realizations and approach an average value equal to zero.  Hence, the applicable 

predicted mean-value of error for the corresponding type of class of data/products of interest is equal to 

zero unless demonstrated otherwise.  

Compelling evidence that the baseline approach is not applicable relies on analysis of the various sample 

mean-values and sample error covariance matrices computed and contained in the populated accuracy 

assessment model as described above.  Numerous data/product realizations must also be involved, and if 

applicable, the root-cause of a significant non-zero mean-value should be investigated in the data/product 

generation system.  In the interim, the predicted accuracy model can either contain the non-zero mean-

value and corresponding error covariance matrix about this mean-value, or continue with the baseline 

approach.   

Finally, even if the true (unknown) mean-value of error were non-zero corresponding to a “system” bias 

in the generation of the type or class of data/products of interest, this is mitigated by the baseline 

approach corresponding to a predicted error covariance matrix that is equivalent to a (vector) root-mean-

square error, and thus, includes the effects of a non-zero mean-value in terms of magnitude. 

Relative accuracy 
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The sample relative error covariance matrix is computed over all relative error samples for each 

data/product realization and corresponding to specified distance bins.  A relative error sample consists of 

the difference between two error samples that are solely constrained to be within the bin’s specified 

distance, regardless where the two geolocations are located within the product.  This practical assumption 

is also consistent with errors modeled as a wide-sense homogeneous random field.  

Consistent with the above, the sample relative error covariance matrix for each data/product realization 

and for each distance bin is computed relative to a mean-value of relative error equal to zero.  There are 

nominally two distance bins: “small” corresponding to the maximum length of the majority of features of 

interest contained in the type or class of data/product of interest, and “large” corresponding to all 

distances that are larger. 

For each distance bin, the above sample relative error covariance matrices are combined over all 

data/product realizations to yield an “ensemble” sample relative error covariance matrix for the distance 

bin.  The average distance of all underlying relative error samples is also computed for the distance bin.  

The distance corresponding to a specific relative error sample is simply the distance between the two 

data/product elements involved; e.g., the distance in image-space between two image locations in an 

image.  

Based on the ensemble relative error covariance matrix and the representative sample error covariance 

matrix (see Absolute accuracy), the corresponding sample (auto) correlation value is computed for each 

distance bin.  The ensemble sample relative error covariance matrix, the sample correlation value, and 

the average distance for each distance bin are contained in the populated accuracy assessment model, 

along with supporting details.   

The sample correlation values along with the corresponding average distances for all distance bins are 

then used to compute (“fit”) the spdcf as part of the predictive statistics in the populated predicted 

accuracy model as described in Section B.2.2 in Appendix B.  The spdcf is nominally from the “CSM four 

parameter” family of spdcf with the two dominant defining parameters 𝐴 and 𝐷 active.  The spdcf in 

conjunction with the error covariance matrix that is also contained in the predicted accuracy model enable 

the calculation of a predicted relative error covariance matrix corresponding to any desired distance of 

interest. 

Scalar accuracy metrics 

Scalar accuracy metrics can be computed corresponding to errors and/or relative errors as derived 

predictive statistics using the contents of the predicted accuracy model per the techniques described in 

TGD 2a (Predictive Statistics) as well as in the various appendices of this document.  They are typically 

computed for vertical errors as LEXX and horizontal errors as CEXX for any desired levels of probability XX, 

which typically include 90%.  

In addition, sample scalar accuracy metrics are computed independently and contained in the populated 

accuracy assessment model per the techniques described in TGD 2b (Sample Statistics) as well as in the 

various appendices in this document.  They are based on order statistics of radial error samples for 
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absolute error and order statistics of radial relative error samples for relative error.  These are typically 

computed for XX=90% only, as higher values of XX require more error samples, which are typically limited 

in number. 

The bottom line: Computation of sample statistics and the corresponding population of an accuracy 

assessment model and the subsequent population of a predicted accuracy model were summarized above 

and are detailed in Appendix B of this document, and to a lesser extent, in Appendix C.  Related issues are 

also discussed and further illustrated, including why the applicable mean-value is typically zero even 

though a single realization of the data/product typically exhibits a systematic or bias-like error.  This effect 

is due to “spatial” correlation and is correctly represented by an spdcf.   

In addition, the computation of sample statistics and related processing summarized above and detailed 

in Appendices B and C correspond to the population of a “standard” predicted accuracy model, not the 

more general MGRF-based predicted accuracy model (Section 5.3.3.3).  MGRF-based predicted accuracy 

is recommended for some geolocation products (e.g., EO-generated 3d Point Clouds) for a higher-fidelity 

representation of predicted accuracy.  Processing for the population of corresponding models is based on 

an extension of the techniques applicable to the standard predicted accuracy model and is outlined in 

Section B.5.2. 

Appendices B and C also take into account that External (Commodities) Data typically has relatively few 

error samples that are available.  This is an unfortunate but realistic situation for many types of External 

Data that must be addressed in order to characterize accuracy as best we can.  

5.3.5.3 Real-world example of accuracy assessment: initial processing and a common issue 

Finally, we close out Section 5.3.5 on “Analysis techniques for the population of models” by illustrating 

sample-based processing using real-data and applicable to the population of a Geolocation Data Accuracy 

Assessment Model along with a common issue associated with such processing.   Analysis corresponds to 

Small-Sat imagery, in particular Planet Dove images as detailed in reference [1].  The populated 

Geolocation Data Accuracy Assessment Model would be used to tune a Geolocation Data Predicted 

Accuracy Model: Measurement-space. 

This example corresponds to initial or “first-step” processing and computes independent samples of 

horizontal radial error and a major sample statistic: CE90.  The CE90 computation is based on the 

techniques recommended in TGD 2c (Specification and Validation), including the use of order statistics, 

the computation of confidence intervals, and the computation of representative error samples.  

References [6] provides an “easy-to-read” summary of TGD 2c and reference [4] provides an “easy-to-

read” summary regarding the computation CE90 and other scalar accuracy metrics specifically.   

The initial processing as detailed in [1] does not include the generation of other sample statistics, such as 

error covariance matrices, and does not address relative accuracy (error) corresponding to two 

geolocations extracted from the same image, both specified as needed for a complete accuracy 

assessment earlier in this document.  Related processing for a complete accuracy assessment was 
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summarized in the previous section and is covered in detail in Appendices B and C, but examples included 

in these and the other appendices are based on simulated data.  

The analysis presented below is from and further detailed in reference [1].  In particular, geolocation 

accuracy was assessed for 60 unrectified (Basic) Dove PS2 images collected from 14 July 2016 to 10 

January 2017 with correspond geo-registration of the images (metadata) performed by Planet from 21 

December 2016 to 10 January 2017.  Geo-registration was performed by Planet as part of their normal 

operations concept in order to produce reasonably accurate image metadata (RPC or sensor pose, etc.) 

by geo-registering individual Planet Dove images to available collections of overlapping control imagery 

of varied numbers and accuracy. 

Various samples of horizontal geolocation error were generated based on the availability of ground truth 

and the process illustrated in Figure 5.3.5.3-1.  Corresponding sample-based CE90 was generated based 

on one representative error sample from each of 60 images.  For a given image, the representative error 

sample was the “average” of multiple individual error samples corresponding to this image per the 

baseline technique of Section 5.6.4 of TGD 2c (Specification and Validation).  

 

 

Figure 5.3.5.3-1: Process for the computation of a specific horizontal geolocation error 

Figure 5.3.5.3-2 presents the corresponding individual error samples for 59 of the 60 images; the image 

that was left-out of the figure in order to keep the plot scale reasonable was over Seymour, Ecuador 

(Galapagos), which had a horizontal error on the order of 330 meters. 

 

Fixed Image Measured Pixel

True 3-D coordinates of image-identifiable, 
ground-surveyed point, including height

2-D coordinates (latitude, 
longitude) from mono 

intersection to true height

2-D Error
(D Easting, D Northing) 
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Figure 5.3.5.3-2: Individual representative error samples from 59 of the 60 images 

As can be seen above, the majority of error samples are reasonably small and indicate relatively little bias 

or common error.  However, 12 of the images had significantly larger errors and corresponded to images 

taken over small islands.  It is theorized that geo-registration did not perform well over the small-islands 

for various reasons.  Regardless, CE90 was computed over all 60 images as presented in Figure 5.3.5.3-3.  

90% of all geolocation horizontal radial errors were less than or equal to 15.5 meters. 
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Figure 5.3.5.3-3: Sample-based CE90 using all 60 images 

Figure 5.3.5.3-4 presents sample errors corresponding to the 48 out of 60 images that did not correspond 

to small islands, and Figure 5.3.3.3-5 presents the corresponding CE90 computation.  With this restriction, 

90% of all geolocation horizontal radial errors are now less than or equal to 11.0 meters.  However, as 

seen in Figure 5.3.5.3-4, there are still some “groupings” of results, although certainly not as severe as 

when all images were included (Figures 5.3.5.3-1 and 5.3.5.3-2). 

 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

89 

 

Figure 5.3.5.3-4: Individual representative error samples from 48 of the 60 images 

 

Figure 5.3.5.3-5: Sample-based CE90 using 48 images 
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The above example illustrates a general problem regarding the population of an accuracy assessment 

model and the corresponding selection and tuning (population) of an applicable predicted accuracy model 

– the “grouping” of errors.  The following lists various alternatives: 

1) Consider the poorer (60 image) results a temporary aberration and use the 48 image result.  Of 

course, results are also qualified as such, i.e., sample statistics correspond to the 48 images not 

associated with small islands.  This is applicable to the populated accuracy assessment model 

explicitly and will affect/tune the populated predicted accuracy model in a similar manner.   

2) Include all results in the statistics.  As such, the big gap between results, although present, will 

not be apparent, i.e., the computed CE90 is pessimistic for most images.  This will affect/tune 

the predicted accuracy model in a similar manner. 

3) Break results into the two camps for the accuracy assessment model statistics: (1) small-islands 

and (2) excluding small islands.  This additional detail will be placed in the populated accuracy 

assessment model, but the predicted accuracy model will be tuned using the ensemble (all 

samples) statistics, i.e., a predicted accuracy model that is pessimistic for most images.  Perform 

additional accuracy assessments as soon as possible to determine whether results were based 

on initial processing “problems”, and hence, not applicable to imagery qualified as 

corresponding to later dates with changes to populated models in accordance. 

4) Break the results into the two camps for the accuracy assessment model, and possibly 

generalize the predicted accuracy model to include the MGRF-concept of Section 5.3.3.3, but 

tailored to imagery instead of to a 3d geolocation product; or more easily, directly as a 3d 

geolocation product for orthoimages when generated as products.  This is a future applied 

research topic, and could reasonably account for any inherent “variability” of the geo-

registration process for an arbitrary image and hence, for an arbitrary geolocation, in a 

probabilistic and theoretically correct manner. 

Until future information and/or applied research is available, Method 3 is recommended. 

5.3.6 The Empirical Quality Model for Crowd-sourcing data/products 

This section of the document describes an empirical quality model for Crowd-sourcing data/products, and 

as such, is termed an “Empirical Quality Model”.  It is used instead of an accuracy assessment model and 

a predicted accuracy model due to the following characteristics of Crowd-sourcing data/products: 

 little if any underlying quality pedigree 

 data varies significantly in terms of “quality” over different realizations of the data/product 

o consistency 

o geolocation accuracy 

o completeness 

o blunders 

 ground-truth is difficult to obtain 

 geospatial coordinates are also associated with specific features and corresponding delineations 

 missing data in the data/product is common, e.g., missing portions of a road. 

Crowd-sourcing data/products are usually based on Volunteered Geographic Information (VGI) for 

applications of interest.  It is this underlying source of data that yields some of the negative characteristics 
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listed above, and correspondingly, the use of the “lower fidelity” empirical quality model as compared to 

the other models previously described. 

However, before proceeding with a description of the Empirical Quality Model, it is first worth pointing 

that there are “positives” associated with Crowd-sourcing data.  In particular, they usually contain more 

recent information than “standard” reference maps of known pedigree, assuming the latter are even 

available in some remote areas. 

A prime example of Crowd-sourcing data is a digital map.  Figures 5.3.6-1 and figure 5.3.6-2 present two 

representative examples over the same AOI near Kathmandu, Nepal using OpenStreetMap and Google 

MyMaps.  Both examples correspond to standard map format, with options available to interactively read-

out geolocations, zoom-in and zoom-out, overlay with satellite imagery, etc., if so desired.  Figure 5.3.6-1 

was also discussed earlier in Section 5.1.1.3. 

 

 

Figure 5.3.6-1: Area of Interest near Kathmandu, Nepal: OpenStreetMaps (general use license) 
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Figure 5.3.6-2: Area of Interest near Kanpur, Nepal: Google MyMaps (general use license) 

Notice the differences in general content including some of the names in the above two figures.  There 

are also some differences in feature shapes (geolocations) apparent for some of the features delineated.  

However, in general, these two maps are reasonably consistent. 

5.3.6.1 Model contents/definition 

The specifics regarding contents of the Empirical Quality Model require further applied research, but are 

recommended to include functions or look-up tables based on important characteristics of the 

data/product type if available, such as: 

 number of volunteers 

o type of volunteers, if possible 

o may not be explicitly available 

 product scene content 

 general geographic area 

 date range 

Corresponding quantities modeled by the above functions include a subset of the following: 

 geolocation accuracy: CEXX, LEXX 

 % of missing data 

 % blunders 

 Consistency of data across a realization 

o Ranked as low, medium, high 

 More specific definitions to be provided 
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 Consistency of data across similar scene content (geographic area and date range) by different 

product types 

o Ranked as low, medium, high 

 More specific definitions to be provided 

 Data description/dates used to estimate the above, including number of samples 

References [11-13,18] discuss Crowd-sourcing in general as well as the assessment of the quality of VGI 

which specifically illustrate general challenges.  For example, reference [11] discusses various assessments 

of the quality of OpenStreetMap, such as one that corresponds to a digital map of London roads that 

contains 80% of desired coverage and approximately 6 meter (no further details) geolocation accuracy as 

compared to a high-quality reference map.  This is for one realization or specific instance of 

OpenStreetMap, and probably represents a “better” example based on the use of VGI data from many 

volunteers over a very important AOI.  The same reference presents other examples that have significantly 

less quality regarding coverage, geolocation accuracy, etc., further illustrating issues and difficulties.   

5.3.6.2 Analysis techniques for population of models for Crowd-sourcing 

If enough ground-truth is available, sample statistics similar to those in a populated accuracy assessment 

model can be generated in support of the characterization of geolocation accuracy in the Empirical 

Reliability Model.  However, this will not be applicable in many situations, although the analysis 

techniques which correspond to a ground-truth substitute (Section 5.3.5.1) may be applicable. 

However, the above cannot be counted on in general, and it does not address the other quantities of 

interest in the Empirical Model, such as coverage or % of missing data.  As such, methods/algorithms for 

the comparison of geolocations and corresponding features/delineations across different realizations 

over the same AOI from different data/product types (e.g., OpenStreet Map, Wikimapia, etc.) are 

applicable when possible.   In terms of geolocation accuracy, such comparisons can also compute upper 

bounds for accuracy by analysis of multiple samples of the relative difference in geolocation coordinates 

between different data/product types – low-fidelity, but needed information none-the-less.  A 

corresponding issue of note regarding geolocation comparisons: two maps may have been generated 

using common underlying information (surveys, satellite imagery, etc.), therefore geolocation difference 

statistics will not include the error in their shared information. 

It will not be uncommon for a specific Crowd-sourcing data/product type that its Empirical Quality Model 

will be available but will only be partially populated, i.e., some specified content will contain “not 

available” entries.  However, some reasonably reliable information is better than none at all. 

The above recommendations for analysis techniques for population of the Empirical Quality Model require 

further detail; corresponding applied research is recommended. 

5.3.7 The data/product is needed now, but accuracy assessments are not available 

Occasionally it may be necessary in the NSG to utilize a data/product that does not have a populated 

predicted accuracy model available due to the lack of previous accuracy assessments for data/products 

from the same corresponding type or class of product.  It could be a data/product that corresponds to 

either Commodities data or Crowd-sourcing data and that essentially has no accuracy pedigree or has an 
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unreliable pedigree.   The relevant point: this data/product is needed “now” for an NSG application and 

there is neither the time nor the data to perform an accuracy assessment and populate a subsequent 

predicted accuracy model – relevant details follow: 

A populated predicted accuracy model is essential for the corresponding predicted accuracy associated 

with an arbitrary element in the data/product in question but is unavailable.  Also, the data/product may 

correspond to very poor accuracy that needs to be improved prior to its reasonable use.   

The following is a recommended approach for the mitigation of this situation and requires some external 

control information.  The control information does not have to be extremely accurate but it should include 

corresponding predicted accuracies.  Of course, the techniques presented earlier in this document that 

rely on previous accuracy assessments and subsequent populated predicted accuracy models are superior 

and preferred whenever possible.  In particular, they are applicable to an arbitrary data/product of a 

specific type or class of data/products and do not utilize/require control information.  The approach 

presented below is applicable to the individual and specific data/product and requires overlapping control 

information.  In addition, the control information is typically not nearly as accurate as the “ground truth” 

used in accuracy assessments. 

The recommended approach is as follows: 

Representative Example: data/product is an image 

Select an (unpopulated) predicted accuracy model applicable to the data/product in question (image, 3d 

geolocation product, etc.).  For example, if an image, select the Geolocation Data Predicted Accuracy 

Model: Measurement-space.  Set the corresponding a priori predictive statistics to represent very large 

uncertainty.  This is illustrated below with subsequent steps assuming an image for specificity.  It is further 

assumed that the image metadata is available, although possibly of very poor quality, as well as the 

availability of a basic sensor model (image-to-ground function). 

(1) Predictive statistics for 2𝑥1 image location(s) 𝑚: 

(a) A priori mean-value equals zero (02×1). 

(b) A priori covariance matrix 𝐶 = [
𝜎𝑙𝑎𝑟𝑔𝑒

2 0

0 𝜎𝑙𝑎𝑟𝑔𝑒
2 ], a 2 × 2 matrix, where 𝜎𝑙𝑎𝑟𝑔𝑒 is an 

appropriately large standard deviation of error, such as 500 pixels assuming a relatively large 

image and relatively large sensor height.  Its use stabilizes the subsequent WLS solution in step 

(2) below. 

(c) Parameters defining the spdcf of intra-image correlation set to values that nominally yield 

approximately 0.8 correlation (unit-less) across the width of the image as well as a value at very 

small distances between image locations such that the corresponding relative accuracy 

𝜎_𝑟𝑒𝑙𝑙𝑎𝑟𝑔𝑒is reasonably large; for example, 5 pixels.  The latter may also be accomplished using 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

95 

the predictive statistics (a priori covariance matrix and spdcf) corresponding to optional sensor-

mensuration or “unmodeled” error – see Section C.3.1. 

(2) Perform a data/product WLS adjustment using external control information: 

Utilize the solution to correct arbitrary image locations in the image and the solution’s a posteriori 

error covariance to represent corresponding predicted accuracy.  The solution is assumed to 

correspond to a correction grid in this representative example – see Section 5.3.3.1 and Appendix 

B.2.2. 

(3) Compute various quality control metrics (e.g., normalized a posterior measurement residuals) 

corresponding to the WLS solution, and based on their expected range of values, edit the measurements 

and/or adjust the above a priori predictive statistics as appropriate and re-perform the solution. 

See Sections B.2.2 and E.3.1.1 for related discussions, and more generally, TGD 2d (Estimators and 

their Quality Control) for further details regarding quality control metrics and related processing. 

(4) Perform QC on the corresponding iterated solution and then iterate the entire solution process again 

if necessary: 

Utilize the various quality metrics listed in TGD 2d corresponding to a WLS solution to help to 

ensure the reliability of the solution. 

If iteration is necessary, modify parameters that affect the WLS solution, such as the covariance 

matrix for a priori measurement error, the number of measurements corresponding to the 

External Data (e.g., control images) – increase if possible, the size of the correction grid, and the 

spdcf.   

The best way to do the above requires further applied research, particularly for automated 

methods. 

Modification of method if metadata is not available: 

Metadata to support the data/product-to-ground relationship may not be available in some more extreme 

situations.  This is not applicable for a geolocation product because such a relationship is direct (the 

identity function), and hence, is always available.  However, it may be applicable to other External Data 

such as imagery.  Regardless, whether predicted accuracy is available or not, a ground-to-image (and 

inverse image-to-ground) relationship is needed for geolocation-related processing.  Therefore, before 

proceeding with processing to control the data/product, such as that described in the previous 

paragraphs, a ground-to-image or “basic” sensor model must first be derived. 

There are various techniques to do so, all also requiring control information in order to generate an 

applicable ground-to-image function.  Some require more control information (e.g., ground control 

points) than others, and some are more rigorous than others.  One example is an image resection which 

estimates sensor physical parameters and is used with a corresponding physical sensor model when 
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identified as applicable for the data/product in question.  Others estimate more generic ground-to-image 

functions, which are also invertible yielding an image-to-ground function.  Such transformations or 

“mappings” include Orthographic and Direct linear transforms (DLT) – see [15] and [14] for details.  This 

general topic as applicable to External Data is also recommended as an applied research topic.  

5.4 Summary 
This document presented specific recommendations for the Quality Assessment of External Data in the 

NSG.  Section 5.4.1 presents an overview of key recommendations and Section 5.4.2 presents 

recommended applied research. 

5.4.1 Key Recommendations 

Table 5.4.1-1 presents key recommendations for External Data and its Quality Assessment based on this 

document. 
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Table 5.4.1-1: Key recommendations 

 

 

 

 

 

Key Recommendations or "Take-Aways"

Outsourcing: contracts should include requirements for contractor to include Quality Assurance/Quality 

Control metrics with delivery of the product for review by appropriate NSG organization to help ensure 

quality/reliability of the product to the end user.

Qualtiy Assessment should consist of two major functions: Quality Assessment Management and
Quality Assessment Analysis:

Quality Assessment Management function should be implemented by one NSG "host" organization if 

possible with appropriate and dedicated funding to input/collate/summarize the individual assessements 

from various NSG organizations, as well as from itself, and make available to all authorized 

organizations/personnel.

Quality Assessment Management function should provide "one-stop shopping" for for the best,

latest, and consistent information regarding the quality, geolocation accuracy, and geolocation

predicted accuracy corresponding to the various External Data (geolocation data and products) used

across the NSG.

Quality Assessment Management function should generate a Quality Assessment Summary

report based on inputs from the supporting Quality Assessment Analysis Function.  It should make

both the summary and these inputs available to the NSG in general.  These inputs are generated as
follows:

Quality Assessment Analysis function should include the generation of: (1) populated Accuracy 

Assessment Model(s), (2) populated Predicted Accuacy Model(s), and/or (3) populated Empirical Quality 

Models(s), the latter for Crowd-Sourcing data/products when applicable. 

Quality Assessment Analysis function  should populate the above models as soon as possible and    

update them periodicially.  These models are applicable to most External data due to its lack of accuracy  

pedigree and/or physical sensor models, or their equivalent, with appropriate metadata. 

Quality Assessment Analysis function  models are practical and based on accuracy assessments of      

error from multiple realizations of the same type or class of data/product of interest.  These models          

support all aspects of geolocation: predicted absolute and relative accuracy, optimal extraction, and 

optimal adjustment of the data/product.  They also enable Actionable Intelligence.
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Table 5.4.1-1: Key recommendations (continued) 

 

 

5.4.2 Recommended future applied research 

Future applied research in support of Quality Assessment of External Data in the NSG is recommended to 

include that listed in Table 5.4.2-1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key Recommendations or "Take-Aways" (continued)

Inorder to minimize the Quality Assessment effort summarized above, utilize (but verify) any accuracy 

pediree available from the geolocation data/product vendor or producer as follows:

Encourage use of reliable Predicted Accuracy Models if  already available from External Data vendor 

(rare), usually includes associated (higher fidelity) physical sensor model; example: Generic Point Cloud 

Model 

Encourage development/availability of appropriate accuracy and predicted accuracy specifications from 

the geolocation data/product vendor or producer; "work with them"
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Table 5.4.2-1: Recommended Applied Research 

 

 

Further details for the recommended content of the Empirical Quality Model for 

Crowd-Sourcing data as well as techniques for its population

Automation for the population of recommended models in general

Details regarding computation/population of the scalar reliability metric contained 

in the Top-level Quality Assessment file/report

Possible use of contour plots to represent various reliability and/or geolocation 

accuracy metrics for a specific data/product type over an Area of Interest

Underlying and more specific definitions for “low”, “medium” and “high” rankings 

contained in the Top-level Quality Assessment file/report and in the Empirical 

Quality Model

Extension of the use of MGRF in the Geospatial Product Predicted Accuracy Model to 

other Predicted Accuracy Models as appropriate

Integration of recommended predicted accuracy and adjustment models in 

appropriate APIs, such as the Community Sensor Model (CSM)

Obtain additional error samples of real geolocation data/products and assess

performance of recommended methods for the population of corresponding models

Non-technical applied research: ways to best mobilize and organize the NSG in 

support of the Quality Assessment of External Data in the NSG

General but unknown modifications to current recommendations based on feedback 

from their initial implementation across the NSG

Development and population of accuracy and predicted accuracy summary metrics 

for features considered as a whole( e.g., a building as a collection of nodes,  edges, 

etc.), including feature attributes (e.g., controid, area, volume)
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6 Notes 

6.1 Intended Use 
This information and guidance document provides technical guidance to inform the development of 

geospatial data accuracy characterization for NSG GEOINT collectors, producers and consumers -- 

accuracy characterization as required to describe the trustworthiness of geolocations for defense and 

intelligence use and to support practices that acquire, generate, process, exploit, and provide geolocation 

data and information based on geolocation data.  This document is part of a series of complementary 

documents.  TGD 2f provides technical guidance for methods, practices, and algorithms regarding External 

Data in the NSG and its Quality Assessment as of part of a series of information and guidance documents 

titled Accuracy and Predicted Accuracy in the NSG.  Other documents in this series address a more 

generalized overview of accuracy and predicted accuracy and additional topic specific technical guidance 

in predictive statistics, sample statistics, specification and validation, estimators and their quality control, 

and Monte-Carlo simulations.  
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 Additional Terms and Definitions 

There are a number of authoritative guides as well as existing standards within the NSG and Department 

of Defense for definitions of the identified additional terms used in this technical guidance document.  In 

many cases, the existing definitions provided by these sources are either too general or, in some cases, 

too narrow or dated by intended purposes contemporary to the document's development and 

publication.  The definitions provided in this document have been expanded and refined to explicitly 

address details relevant to the current and desired future use of accuracy in the NSG.  To acknowledge 

the basis and/or lineage of certain terms in Section 3.1, we reference the following sources considered as 

either foundational or contributory: 

[a] Anderson, James M. and Mikhail, E., Surveying: Theory and Practice, 7th Edition, WCB/McGraw-Hill, 

1998. 

[b] DMA-TR-8400.1, DMA Technical Report: Error Theory as Applied to Mapping, Charting, and Geodesy. 

[c] Defense Mapping Agency, Glossary of Mapping, Charting, and Geodetic Terms, 4th Edition, Defense 

Mapping Agency Hydrographic/Topographic Center, 1981. 

[d] ISO TC/211 211n2047, Text for ISO 19111 Geographic Information - Spatial referencing by coordinates, 

as sent to the ISO Central Secretariat for issuing as FDIS, July 17, 2006. 

[e] Joint Publication (JP) 1-02, Department of Defense Dictionary of Military and Associated Terms, 

November 8, 2010 as amended through January 15, 2016. 

[f] MIL-HDBK-850, Military Handbook: Glossary of Mapping, Charting, and Geodetic Terms, January 21, 

1994. 

https://www.geospatialworld.net/blogs/nanosatellites-or-small-satellites-are-going-to-play-a-big-role/
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http://www.planet.com/gallery/el-alamein-20160828/
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[g] MIL-STD-2401, Department of Defense Standard Practice; Department of Defense World Geodetic 

System (WGS), January 11, 1994  

[h] MIL-STD-600001, Department of Defense Standard Practice; Mapping, Charting and Geodesy 

Accuracy, February 26, 1990. 

[i] National System for Geospatial Intelligence [Brochure] Public Release Case #15-489. 

[j] NGA.STND.0046_1.0, The Generic Point-cloud Model (GPM): Implementation and Exploitation, Version 

1.0, October 03, 2015. 

[k] Oxford Dictionaries (www.oxforddictionaries.com/us/) copyright © 2016 by Oxford University Press. 

[l] Soler, Tomas and Hothem, L., “Coordinate Systems Used in Geodesy: Basic Definitions and Concepts”, 
Journal of Surveying Engineering, Vol. 114, No. 2, May 1988. 
 

A priori - Relating to or denoting reasoning or knowledge that proceeds from theoretical deduction rather 

than from observation or experience.  [k]  

 For typical NSG accuracy and predicted accuracy applications, a priori refers to a mathematical 

statistical model of errors and/or the corresponding state vector containing those errors prior to 

its adjustment using additional information. 

A posteriori - Relating to or denoting reasoning or knowledge that proceeds from observations or 

experiences to the deduction of probable causes. [k] 

 For typical NSG accuracy and predicted accuracy applications, a posteriori refers to a refined 

mathematical statistical model of errors and/or the corresponding state vector containing those 

errors following its adjustment using additional information. 

Absolute Horizontal Accuracy - The range of values for the error in an object’s horizontal metric 

geolocation value with respect to a specified geodetic horizontal reference datum, expressed as a radial 

error at the 90 percent probability level (CE). [b],[f],[j] 

 There are two types of absolute horizontal accuracy: predicted absolute horizontal accuracy is 

based on error propagation via a statistical error model; and measured absolute horizontal 

accuracy is an empirically derived metric based on sample statistics. 

 The term “horizontal accuracy” is assumed to correspond to “absolute horizontal accuracy”. 

 The 90% probability level (CE) is the default; 95% and 50% probability levels are optional, i.e., 

CE_95 and CE_50, respectively. 

Absolute Vertical Accuracy - The range of values for the error in an object’s metric elevation value with 

respect to a vertical reference datum, expressed as a linear error at the 90 percent probability level (LE). 

[b],[f],[j] 

http://www.oxforddictionaries.com/us/
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 There are two types of absolute vertical accuracy: predicted absolute vertical accuracy is based 

on error propagation via a statistical error model; and measured absolute vertical accuracy is an 

empirically derived metric based on sample statistics. 

 The term “vertical accuracy” is assumed to correspond to “absolute vertical accuracy”. 

 The 90% probability level (LE) is the default; 95% and 50% probability levels are optional, i.e., 

LE_95 and LE_50, respectively. 

Accuracy (augmented definition) - The range of values for the error in an object’s metric value with 

respect to an accepted reference value expressed as a probability. [f] 

In an NSG Geolocation System a typical object of interest is an arbitrary 3d geolocation extracted by the 

system, with a more specific definition of accuracy as follows: 

 Accuracy   

o The probability of error corresponding to an arbitrary 3d geolocation extracted by the 

system.  The probability of error is typically expressed as CE90=XX meters, the 90% 

probability that horizontal circular or radial error is less than XX meters, as well as LE90=YY 

meters, the 90% probability that vertical linear error is less than YY meters.  In general, 

the error is represented as a 3d random vector and its corresponding CE90 and LE90 

values are typically specified and/or evaluated based on sample statistics of independent 

samples of error. 

 The accuracy requirements for a Geolocation System are typically specified as 

horizontal radial error and vertical linear error of an arbitrary but specific 3d 

geolocation are less than specCE90 with a probability of 90% and less than 

specLE90 with a probability of 90%, respectively. 

 An “accurate geolocation” is defined as the geolocation of a specific extraction 

that satisfies the specified accuracy requirements of the Geolocation System. 

 

Bias Error - A category of error; an error that does not vary from one realization (trial or experimental 

outcome) to the other.  When error is represented as a random variable, random vector, stochastic 

process, or random field, a bias error corresponds to a non-zero mean-value. [f],[j]  

 Caution: a given realization of a mean-zero stochastic process with typical temporal correlation 

and over a reasonable finite time interval appears to have a non-zero sample mean-value; 

however, when sample statistics are taken over enough multiple (independent) realizations, the 

sample mean-value approaches zero in accordance with the true mean-value.  This characteristic 

extends to random fields as well. 

CE-LE Error Cylinder - A 3D cylinder made up of CE and LE such that there is between 81-90% probability 

that the 3d error resides within. 

Circular Error (CE) – See Scalar Accuracy Metrics. 
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Confidence Ellipsoid - An ellipsoid centered at an estimate of geolocation such that there is a 90% 

probability (or XX% if specified specifically) that the true geolocation is within the ellipsoidal boundary 

(ellipsoid interior).  A confidence ellipsoid is typically generated based on an error covariance matrix, an 

assumed mean-value of error equal to zero, and an assumed multi-variate Gaussian probability 

distribution of error in up to three spatial dimensions. 

Confidence Interval - A type of interval estimate of an unknown population parameter in statistics.  More 

specifically, if 𝑋 is a vector of random samples from a probability distribution with statistical parameter 𝜃 

which is to be estimated with confidence-level (confidence coefficient) 𝛾: 

 𝑝𝑟𝑜𝑏{𝑎(𝑋) < 𝜃 < 𝑏(𝑋)} = 𝛾, where 𝑎(𝑋) and 𝑏(𝑋) are random end-points and functions of 𝑋. 

 Note that the probability distribution need not be specified, but typically is, e.g., a Gaussian 

(Normal) distribution, a commonly assumed continuous probability distribution. 

 Typical parameters represented by 𝜃 are the distribution’s (or corresponding random variable’s) 

mean-value, standard deviation, or percentile. 

 The above confidence interval is a two-sided confidence interval; a one-sided confidence interval 

involves only 𝑎(𝑋) or 𝑏(𝑋) and is bounded on one side, e.g., 𝑝𝑟𝑜𝑏{𝜃 < 𝑏(𝑋)} = 𝛾. 

Correlated Error - A category of errors; errors that are correlated with other errors, and typically 

represented in the NSG as a random vector, stochastic processes, or random field.  A correlated error is 

independent (uncorrelated) with itself and other errors from one realization (trial or experimental 

outcome) to the next.  However, within a given realization, it is correlated with other errors of interest:  

 If a random vector, the various elements (random variables) which make it up are correlated with 

each other (intra-state vector correlation). 

 If a stochastic process, the collection of random vectors which make up the stochastic process are 

correlated with each other (inter-state vector correlation).  That is, the elements of one random 

vector are correlated with the elements of another random vector, typically the closer the two 

random vectors in time, the greater the correlation.  A similar concept is applicable to random 

fields. 

Correlated Values - Values (of random variables) which are related by a statistical interdependence. For 

two random variables, this interdependence is represented by their covariance and typically expressed as 

a correlation coefficient – both have non-zero values.  This interdependence is relative to deviations about 

their respective mean-values.  [f]     

Covariance - A measure of the mutual variation of two random variables, where variations (deviations or 

dispersions) are about their respective mean-values. If the covariance between two random values is zero, 

they are uncorrelated. [b]  

Cross-covariance Matrix - An 𝑛𝑥𝑚 matrix containing the covariance between each pair of elements 

(random variables) of an 𝑛𝑥1 random vector and an 𝑚𝑥1 random vector. 
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Degree of freedom - The number of scalar measurements m minus the number of state vector 

components n for solution in a NSG Estimator. 

Deterministic Error - An error that is not random or dependent on “chance” – a “known” value, such as 

the specific realization of an error of an estimated geolocation as compared to “ground truth”, i.e., their 

difference, where “ground truth” is assumed error-free. 

Elevation - Vertical distance from a datum, usually mean sea level, to a point or object on the Earth’s 

surface; not to be confused with altitude which refers to points or objects above the Earth’s surface.  In 

geodetic formulas, elevations are heights: h is the height above the ellipsoid; H is the height above the 

geoid or local datum.  Occasionally h and H may be reversed.  [c], [f] 

Error (augmented definition) - The difference between the observed or estimated value and its ideal or 

true value. [f] There are a number of different categories of errors applicable to the NSG: Bias Error, 

Random Error, and Correlated Error.  In general, an error of interest may be a combination of errors from 

these categories. Their combination is typically represented as either a random variable, random vector, 

stochastic process, or random field: 

 A random variable represents a bias error plus a random error.  The former corresponds to the 

random variable’s mean-value, and if equal to zero, the random variable represents random error 

only, which is uncorrelated from one realization of the random variable to the next realization. 

 A random vector, stochastic process, and random field can represent all three categories of error.  

The random variables that make-up (are elements of) random vectors are uncorrelated from one 

realization to the next by definition.  However, within a given realization, they can also be 

correlated with each other:   

o For a random vector per se, this correlation is also termed “intra-state vector correlation”. 

o For a stochastic process, which consists of a collection of random vectors, random 

variables in one random vector can also be correlated with random variables in another 

random vector, this is also termed “inter-state vector” correlation.  The same concept is 

applicable to random fields. 

Fusion - A process that combines or relates different sources of (typically independent) information. 

Linear Error (LE) – See Scalar Accuracy Metrics 

Local Tangent Plane Coordinate System - A local X,Y,Z right-handed rectangular coordinate system such 

that the origin is any point selected on a given reference ellipsoid, its XY plane is tangent to the reference 

ellipsoid at the point of origin, and the Y-axis is typically directed to the North Pole (an East-North-Up 

(ENU) system). [a] 

Mean-Value - The expected value of a random variable.  Given a collected sample of measurements, the 

sample mean-value is the average of the values of the sample measurements.  The mean-value of a 

predictive error is typically assumed zero unless specifically stated otherwise.  If correctly modeled, the 
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predictive mean-value should be closely approximated by the sample mean-value taken over a large 

number of independent and identically distributed samples.  

 The concept of mean-value readily extends to random vectors and is the vector of the mean-

values of the individual components or random variables making up the random vector.  It readily 

extends to stochastic processes and random fields as well, since they are collections of random 

vectors.  If (wide-sense) stationary or (wide-sense) homogeneous, respectively, their 

corresponding mean-value is a constant random vector mean-value. 

Multi-Image Geopositioning (MIG) - An optimal solution for a “target’s” geolocation (state vector) with 

reliable predicted accuracies based on the (weighted) measurements of the geolocation in one or more 

images.    A batch process which minimizes the sum of weighted a posteriori measurement residuals, 

where the latter may also include measurements equivalent to a priori estimates of geolocation.  MIG can 

also correspond to the simultaneous solution for the geolocation of multiple targets.  In general, a MIG 

solution’s predicted accuracies correspond to or are derived from the solution’s a posteriori error 

covariance matrix.   

Monte-Carlo Simulation - A technique in which a large number of independent sample inputs for a system 

are randomly generated using an assumed a priori statistical model to analyze corresponding system 

output samples statistically and support derivation of a statistical model of the system output.  This 

technique is valuable for complex systems, non-linear systems, and those where no insight to internal 

algorithms is provided (“black box” systems). 

Multi-State Vector Error Covariance Matrix - An error covariance matrix corresponding to multiple state 

vector errors (random error vectors) “stacked” one on top of the other as one large state vector error 

(random error vector), e.g. to represent the position and attitude errors of multiple images’ adjustable 

parameter errors that impact the solution and predicted accuracy of a subsequent MIG.  The multi-state 

vector error covariance matrix is sometimes termed the joint covariance matrix for a collection of multiple 

state vector errors. 

Predicted Accuracy (augmented definition) - The range of values for the error in a specific object’s metric 

value as expressed by a statistical or predictive error model, and may also be expressed as a probability if 

a specific probability distribution is specified or assumed, typically a Gaussian (or Normal) probability 

distribution. 

In an NSG Geolocation System a typical object of interest is an arbitrary but specific 3d geolocation 

extracted by the system, with a corresponding definition of predicted accuracy as follows: 

 Predicted accuracy  

o A statistical description of the error in a specific geolocation extracted by the system.  

The error is expressed as a 3d random vector and the statistical description consists 

primarily of an error covariance matrix of the random vector about a mean-value 

typically assumed equal to zero unless specifically stated otherwise.  The probability of 

error can also be computed if either a probability distribution is also specified or a multi-



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

107 

variate Gaussian probability distribution of error is assumed.  The probability of error is 

expressed as a probability or confidence ellipsoid at a specified probability or confidence 

level, respectively, and may also be expressed as CE90 and LE90. 

 The estimate of geolocation is usually performed by an estimator, such as a 

Weighted Least Squares estimator, with a corresponding solution error that is a 

function of measurement errors that are random from one solution or 

realization to the next as well as sensor-to-ground geometry at different 

geolocations.  

 The term “predicted” in predicted accuracy does not correspond to a prediction 

of accuracy applicable to the future since the corresponding error corresponds 

to a geolocation already generated or extracted by the NSG Geolocation 

System. 

 “Reliable predicted accuracy” is defined as predicted accuracy that is consistent 

with solution error(s). 

 

Principal Matrix Square Root - The principal matrix square root of a valid error covariance matrix is a valid 

error covariance matrix itself of the same dimension such that when multiplied with itself yields the 

original error covariance matrix.  The calculation of principal matrix square root is based on Singular Value 

Decomposition. 

Probability density function - A function that defines the probability distribution of a random variable.  If 

continuous, its integral is the (cumulative) probability distribution function. 

Probability distribution - Identifies the probability of a random variable’s values over an applicable range 

of values. There are many different types of probability distributions: Gaussian or Normal, uniform, 

exponential, etc.  

 In most NSG applications for accuracy and predicted accuracy, the random variable and its 

probability distributions are assumed continuous. 

 The probability distribution is specified by either a probability density function or a (cumulative) 

probability distribution function; either based on an a priori model or sample statistics. 

Probability distribution function (cdf) - The (cumulative) probability distribution function defines the 

probability that a random variable’s value is less than or equal to a specified number in the interval [0,1]. 

Radial Error - A generalization of two horizontal error components (𝑥, 𝑦) or three dimensional (horizontal 

and vertical error components – 𝑥, 𝑦, 𝑧) error components to a distance value (magnitude) as measured 

along the radius of a circle or sphere, respectively.   

Random Error - A category of error; a measure of deviation from an ideal or true value which results from 

an accidental and unknown combination of causes and varies from one measurement to the next. Not 

deterministic.  For NSG applications, a random error is typically represented as a random variable, random 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

108 

vector, stationary process, or random field.  And more specifically, as deviations about their mean-values, 

the latter considered biases. [b],[f]  

 The random error corresponding to a random variable or the random error corresponding to (the 

elements of) a random vector are independent (uncorrelated) from one realization to the next, 

by definition. 

 The random error corresponding to (the elements of) a random vector can also be correlated 

between the various elements for a given realization (intra-state vector correlation); hence this 

error is also a correlated error. 

 The random error corresponding to a stochastic process corresponds to the collection of random 

errors associated with the collection of random vectors making up the stochastic process.  

Random error is independent (uncorrelated) from one realization to the next.  However, within a 

specific realization, the individual random error vectors are typically temporally correlated 

amongst themselves (inter-state vector correlation); hence, random error is also correlated error.  

This same characteristic extends to random fields. 

 The probability distribution for a random variable representing a random error is arbitrary – not 

necessarily Gaussian. 

Random Error Vector - An error represented by a nx1 random vector, and in the NSG, typically 

corresponds to the error in a state vector’s value.  The error itself could correspond to a combination of 

errors from different error categories: bias error, random error, and/or correlated error.  That is, the term 

“random error vector” does not imply the corresponding category of error is necessarily (only) “random 

error”. 

Random Field - A random field (RF) is a collection of random vectors (RV), parameterized by an N-

dimensional spatial vector q.  In general, two different random vectors from the same realization of the 

random field are correlated.  In the NSG, when error is represented by a random field, its corresponding 

statistics are specified by a statistical error model.  A general descriptor of a given random field is as 

follows: a (“scalar” or “multi-variate”) (“homogeneous” or “non-homogeneous”) “ND random field”.  

 Scalar (n=1) or multi-variate (n>1) refers to the number of elements n that each random vector 

contains and is sometimes described as “(nd)”, e.g. (2d) corresponds to 2 elements (random 

variables) per random vector. 

 Homogeneous or non-homogeneous refers to whether the corresponding statistics are invariant 

or vary over spatial location q. 

 ND refers to the number of spatial dimensions (number of elements in q), e.g. 3D corresponds to 

3 spatial dimensions.  Each random vector corresponds to a unique value of q. 

 As an example of terminology, “a multi-variate homogeneous 3D random field” or more 

specifically “a homogeneous 3D random field (2d)” corresponds to a multi-variate homogeneous 

random field over 3 spatial dimensions (q is a vector with 3 elements).  The random vectors 

contain 2 elements. 
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 Spatial dimensions are general.  For typical NSG applications, they correspond to some 

combination of geolocation directions and time.  Note that a stochastic process is also a random 

field with N=1. 

 In general, the collection of random vectors is infinite for a random field; however, only a finite 

subset are of interest for most applications, i.e., random vectors associated with a finite set of 

spatial locations. 

 For typical NSG applications, the spatial correlation of a random field is specified by one of more 

strictly positive definite correlation functions (spdcf) contained in the corresponding statistical 

error model. 

Random Variable - A variable whose value varies by chance, i.e., non-deterministic. Somewhat more 

formally, a random variable is a mapping from the space of experimental outcomes to a space of numbers.  

In the NSG, when error is represented by a random variable (a random vector with one component or 

element, i.e., n=1), its corresponding statistics are specified by a statistical error model. 

 For most NSG applications, the space of experimental outcomes is already a number.  For 

example, the x-component of sensor position can be considered a random variable.  Equivalently, 

it can be defined as the true x-component of sensor position plus x-component of sensor position 

error, the former a deterministic (typically unknown) value and the latter a random variable.   

 A random variable is statistically characterized by its mean-value, variance, and (more completely) 

its probability density function (pdf).  The probability density function (pdf) is typically unknown 

and not included, but if needed for the calculation of probabilities, assumed Gaussian distributed 

with the pdf completely characterized by the mean-value and variance. 

Random Vector - A random vector (RV) is an nx1 vector which contains n random variables as components 

or elements.  In the NSG, when error is represented as a random vector, its corresponding statistics are 

specified by a statistical error model.  The corresponding random vector is also sometimes termed a 

random error vector. 

 The realization of a Random Vector corresponds to a specific value of the vector (components or 

elements) for a given event such as a trial or experiment.  Important descriptive statistics of a RV 

are its mean (vector) value and the error covariance matrix about the mean, and optionally, a 

multi-variate probability density function.  These statistics can be predictive or sample-based. 

Realization - For NSG accuracy and predicted accuracy applications, a specific trial or experimental 

outcome or independent sample involving a random error (category of error). 

Relative degree of freedom - The degree of freedom divided by the number of state vector elements n 

for solution in an NSG Estimator; essentially the average degree of freedom per component for solution, 

or the average measurement redundancy. 

Relative Horizontal Accuracy - The range of values for the error in the difference between two objects’ 

horizontal metric geolocation values with respect to a specified geodetic horizontal reference datum; e.g., 

expressed as a radial error at the 90 percent probability level (CE90). There are two types of relative 
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horizontal accuracy: predicted relative horizontal accuracy is based on error propagation via a statistical 

error model(s); and measured relative horizontal accuracy is an empirically derived metric based on 

sample statistics. 

Relative Vertical Accuracy - The range of values for the error in the difference between two objects’ 

vertical metric geolocation values with respect to a specified geodetic vertical reference datum; e.g.  

expressed as a linear error at the 90 percent probability level (LE90). There are two types of relative 

vertical accuracy: predicted relative vertical accuracy is based on error propagation via a statistical error 

model(s); and measured relative vertical accuracy is an empirically derived metric based on sample 

statistics. 

Scalar Accuracy Metrics (augmented definition) - convenient one-number summaries of geolocation 

accuracy and geolocation predicted accuracy expressed as a probability:   [b],[f], and [h] 

 Linear Error (LE) - LE is an unsigned value that corresponds to the length of a vertical line (segment) 

such that there is a 90% probability that the absolute value of vertical error resides along the line.  

If the line is doubled in length and centered at the target solution, there is a 90% probability that 

the true target vertical location resides along the line.  LE_XX corresponds to LE at the XX % 

probability level. 

 Circular Error (CE) - CE is an unsigned value that corresponds to the radius of a circle such that 

there is a 90% probability that the horizontal error resides within the circle; or equivalently, if the 

circle is centered at the target solution, there is a 90% probability the true target horizontal 

location resides within the circle.  CE_XX corresponds to CE at the XX % probability level.  

 Spherical Error (SE) - SE is an unsigned value that corresponds to the radius of a sphere such that 

there is a 90% probability that 3d error resides within, or equivalently, if the sphere is centered at 

the target solution, there is a 90% probability that the true target location resides within the 

sphere.  SE_XX corresponds to SE at the XX % probability level. 

For the above scalar accuracy metrics:  

 It is assumed that the underlying 𝑥-𝑦-𝑧 coordinate system is a local tangent plane system, i.e., 𝑥 

and 𝑦 are horizontal components and 𝑧 the vertical component.   

 CE-LE corresponds to the CE-LE error cylinder.  There is a probability between 81 to 90 percent 

that 3d radial error resides within the cylinder.  The former value corresponds to uncorrelated 

horizontal and vertical errors, the latter value to highly correlated horizontal and vertical errors. 

 LE_XX, CE_XX, and SE_XX (aka LEXX, CEXX, and SEXX, respectively) are also called XX percentiles 

for absolute vertical errors, horizontal radial errors, and spherical radial errors, respectively.  XX 

is expressed as an integer greater than zero and less than 100. 

Spatial Correlation - The correlation between the elements (random variables) of two random vectors at 

two different spatial locations associated with the same realization of a random field. 

Spherical Error (SE) - See Scalar Accuracy Metrics. 
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Standard Deviation – The square root of the variance of a random variable.  A measure of deviation or 

dispersion about the random variable’s mean-value. 

State Vector - A vector of parameters or variables that describe a system’s state. 

State Vector Error - A vector of errors corresponding to an estimate of a state vector relative to a (typically 

unknown) true state vector; a random vector of errors, or random error vector. 

Statistical Error Model - Information which describes the error data corresponding to a given state vector.  

The information includes the type of corresponding error representation (random variable, random 

vector, stochastic process, or random process), the category of statistics (predictive or sample), and 

associated statistical information including at a minimum the mean-value and covariance data. 

Stochastic Process - A stochastic process (SP) is a collection of random vectors (RV), parameterized by a 

1D quantity, typically time.  For a given realization of the stochastic process, the individual random vectors 

are correlated with each other.  If the random vectors consist of one element or component (n=1), the 

stochastic process is sometimes called a scalar stochastic process, and if greater than one, a multi-variate 

stochastic process.  A stochastic process is also a random field with one spatial (or time) dimension, i.e., 

N=1.  In the NSG, when error is represented as a stochastic process, its corresponding statistics are 

specified by a statistical error model. 

Strictly positive definite correlation function (spdcf) -   function which models the statistical correlation 

between random vectors (random variables), typically applied in the NSG to describe the temporal 

correlation and/or spatial correlation between various random vectors which are part of a stochastic 

process or random field, i.e., the spdcf is a function of delta time or delta distance (possibly in each of 

multiple directions) between random vectors.  The proper use of an spdcf ensures assembly of a valid 

multi-state vector error covariance matrix, i.e., positive definite and symmetric. 

Temporal Correlation - The correlation between the elements (random variables) of two random vectors 

at two different times associated with the same realization of a stochastic process. 

Uncorrelated Error - At an intuitive level, an error that is statically unrelated to all other relevant errors.  

More precisely, if two random variables represent two uncorrelated errors (about their respective mean-

values), their covariance and their corresponding correlation coefficient are zero.  A random variable is 

uncorrelated (with itself) from one realization to the next by definition. This latter property is also true 

for the random variables making up random vectors, stochastic processes, and random fields.  However, 

these three representations typically include correlated errors within the same realization.   

Variance - The measure of the dispersion of a random variable about its mean-value, also the standard 

deviation squared. [b] 

Vertical Error - As applied to geospatial measurements and processes, vertical error is a signed and one 

dimensional (linear) error value typically observed in the direction of the 𝑧-axis of a local right-handed 
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coordinate system where the 𝑥, 𝑦 plane is defined as tangent to the defined reference surface at the point 

of origin and the 𝑧-axis is normal to the 𝑥, 𝑦 plane and positive in the up direction. 

 

 Geolocation Product Accuracy Models – the basics 

This appendix describes the basics of the Geolocation Product Accuracy Assessment Model and the 

Geolocation Product Predicted Accuracy Model:  

 their corresponding contents 

 methods for their population based on the computation of sample-statistics and predictive 

statistics 

 applications 

 performance or populated model “fidelity” 

The models that are detailed in this appendix are illustrated in Figure B.1 in red.  The populated 

Geolocation Product Accuracy Assessment Model is used to populate the corresponding Geolocation 

Product Predicted Accuracy model.  Both models correspond to specific type or class of geolocation 

product. 
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Figure B-1: Models described in this appendix (red) 

For many types of External Data it is not uncommon to have relatively few samples of error available to 

populate an accuracy assessment model.  This appendix presents corresponding methods to compute 

sample statistics in order to populate an accuracy assessment model, followed by methods to populate a 

corresponding predicted accuracy model.  Because of the availability of relatively few samples, both 

populated models would typically be “ranked” as either “low” or “medium” quality in corresponding 

references to them in the Quality Assessment Summary described in Section 5.2.1 of the main body of 

this document.  

Although the methods presented in this appendix are relatively simple, they are reasonable as well as 

practical.  As such, they do not include more comprehensive statistical methods that typically require 

more samples, such as the computation of confidence intervals, a heavy reliance on order statistics, etc.  

However, they can also be applied to a larger number of samples when they are available for convenience, 

with corresponding quality ranked “medium” or “high”.  For a description of additional and more 

comprehensive methods, see TGD 2a (Predictive Statistics) and TGD 2b (Sample Statistics). 
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For a subset of the External Data described above, it is also not unusual to know virtually nothing a priori 

about their geolocation accuracy as well as have very few error samples available.  Correspondingly, 

although the quality or confidence in the processing results will be ranked “low”, such results are 

significantly better than no knowledge at all as long as the quality rankings are readily apparent.  

For example, there may be a type of geolocation product with geolocation accuracy that could be within 

the range of from ten meters of error to hundreds of meters of error, i.e., error characteristics are virtually 

unknown.  Using the methods described in this appendix, and assuming that the true (unknown) accuracy 

is on the order of 30 meters (one sigma), an estimate of accuracy ranging from 15 meters to 60 meters 

(one sigma) might be computed with very few samples – still significant information given that virtually 

nothing was known previously and considering that results are tempered by a “low” ranking for quality.  

Of course, if more than a very few error samples are available, a better estimate of accuracy is achievable 

– as good as ranging from 27 to 33 meters per the Section B.4 experiments parameterized by number of 

samples.  Furthermore, regardless the number of initial error samples, additional samples may be made 

available in the future that can be pooled with this first set for a better estimate of geolocation accuracy 

and a higher quality ranking. 

 

Sections B.1 and B.2 of the appendix describes the processing required to populate an accuracy 

assessment model and corresponding predicted accuracy model, respectively, for a geospatial product.  

Both models assume that 2d horizontal geolocation errors are of interest for convenience.  Processing is 

readily extendable in a straightforward manner to 3d geolocation errors, either horizontal and/or vertical 

errors separately or combined together as a 3d error vector.  Section B.3 provides a brief summary of user 

applications of the populated predicted accuracy model.  Section B.4 presents a performance assessment 

of the overall process of model population based on an extensive set of simulated examples/experiments 

and includes various plots illustrating underlying concepts.  Section B.5 discusses extension of the 

documented processing.   

 

In general, the processing described in this appendix is based on the following: predictive statistics 

correspond to the representation of geolocation errors as a wide-sense homogeneous random field, and 

sample statistics are in accordance with this assumption.  As such, the mean-value of error and the error 

covariance matrix about this mean-value are assumed constant across an arbitrary realization of the 

product, and the spatial correlation of errors is only a function of distance between two geolocations.  

That is, these predictive statistics are independent of the absolute locations of geolocations of interest in 

the product.  As such, relative errors also have a mean-value of zero and corresponding distance bins are 

a function of the distance between two geolocations only, and not the geolocations’ absolute locations.  

Furthermore, the random field is assumed Gaussian distributed, and therefore the mean-value and error 

covariance matrix completely characterize the multi-variate probability distribution of geolocation errors. 

 

The above corresponds to the “standard” predicted accuracy model and not to an assumed MGRF 

representation of geolocation uncertainty, as the latter represents geolocation errors as a mixture of 

multiple Gaussian wide-sense homogeneous random fields.  However, an MGRF representation: (1) is not 

required in general for Commodities data, and (2) typically requires more than a relatively few error 
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samples for adequate population.  On the other hand, this appendix is consistent with an MGRF 

representation that contains only one partition and one random field – the nominal partition and its 

random field that were discussed previously in Section 5.3.3.3.   

 

Computation of sample statistics in support of the population of an MGRF based on the techniques 

presented in this appendix is discussed further in Section B.5.2.  Appendix E describes the MGRF concept, 

contents, and applications in detail. 

 

This appendix (Appendix B) is referenced in Section 5.3.4 of the main body of this document as well as in 

various other appendices that refer to the basic processing regarding the computation of sample statistics 

and predictive statistics presented here.  A roadmap to the remainder of Appendix B is as follows:  

 

Roadmap to Appendix B sections 

B.1 Population of the accuracy assessment model 

 B.1.1 Absolute accuracy 

 B.1.2 Relative accuracy 

 B.1.3 Outputs 

B.2 Population of predicted accuracy model 

 B.2. Absolute Accuracy 

 B.2.1 Relative Accuracy 

 B.3.1 Outputs 

B.3 Applications 

B.4 Performance assessment of populated models: quantitative results 

B.5 Extension of results 

B.1 Population of the accuracy assessment model 

Let us assume that errors of interest are 2d horizontal geolocation errors for simplicity and ease of 

notation.  The processing described below can be simplified to 1d vertical errors and performed 

separately, if so desired, or horizontal error samples can instead be combined with the vertical error 

samples for a subsequent 3d analysis by straight-forward extensions.  Error samples correspond to a 

product geolocation minus “ground truth” coordinates. 

 

The following assumes that relatively few horizontal error samples are available – on the order of from 4 

to 10 samples of 2d error from each of from 3 to 20 product realizations.   Multiple realizations of the 

product are required in order to assess absolute accuracy, and multiple samples of geolocation error in 

the same realization are also required in order to assess relative accuracy.  The processing described is 

reasonably flexible and can even support the availability of only one error sample in some product 

realizations as long as other product realizations have multiple samples. 

 

The more samples available, both within a product and across products, the better (statistically significant) 

the results.  As a general “rule of thumb”, at least 10 product realizations are preferred, with most having 
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samples of error corresponding to at least 7 geolocations at varied distances between pairs.  In addition, 

a significant number of these distances should also be “small” regardless the number of product 

realizations, where a “small” distance corresponds to the typical length of a feature of interest in the 

product and for which predicted relative accuracy is of particular importance. Section B.4 characterizes 

performance results based on fewer product realizations and fewer error samples per realization. 

 

Error samples are also assumed individual error samples from a product (realization), not one 

“representative” error sample from the product that was used in the analysis described in Section 5.3.5.3 

of the main body of this document.  Representative error samples do not support the assessment of 

relative errors and/or the characterization of the spatial correlation of errors. 

 

Finally, the processing in this section computes the various sample statistics of interest based on the 

equivalent of WLS solutions for the statistics of interest using the samples from each product weighted 

by the number of samples in that product – the greater the number of samples from a product, the higher 

its relative weight or influence it has on the various solutions.  

  

This approach to weighting is practical and also reasonable given that the errors in a product are not 100% 

spatially correlated and can also include non-negligible mensuration errors that is almost always 

uncorrelated between samples.  If these two characteristics were not applicable, a product’s errors would 

be a bias (only) and the same bias for all products; correspondingly, one sample from a product would 

contain the same information as a hundred samples.  If this were the case, optimal weighting would be 

the same weight for all products regardless their number of samples. 

 

Note: theoretical statistical significance is not quantified explicitly in this appendix, but is detailed in TGD 

2a and TGD 2b for various statistics as a function of the number of independent samples.  A somewhat 

crude but convenient “rule of thumb” for predicted accuracy in general: 𝑝𝑟𝑒𝑑_𝜎 ≅ 𝑡𝑟𝑢𝑒_𝜎 +

/− 𝑡𝑟𝑢𝑒_𝜎/√𝑛, where 𝑛 is the number of independent samples of error.  This is similar to a confidence 

interval for predicted accuracy but without an explicit level-of-probability specified.  In addition, statistical 

significance is quantified empirically in Section B.4. 

 

Caution: in the following documentation, the index 𝑖 represents a different realization 𝑖 of the 

data/product, not an MGRF partition 𝑖, as an MGRF representation of uncertainty is not used as explained 

earlier in the introduction to this appendix. 

B.1.1 Absolute accuracy 

Introduction and initial definitions 

 

Define 𝜖𝑋𝑖𝑗 as a 2 × 1 sample of horizontal error corresponding to from 𝑗 = 1,… , 𝑛𝑖 geolocations in from 

𝑖 = 1, . . , 𝑚 data/product independent realizations.  In general, geolocation errors corresponding to 

geolocations in the same realization are spatially correlated, but independent (uncorrelated) with 

geolocations from different realizations.   
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It is required that the number of realizations (𝑚) is greater than or equal to two and that at least two of 

those realizations have at least two samples of geolocation error in order to proceed.   

 

If the above requirement regarding the number of samples in the same realization of the product is not 

met, statistics corresponding to absolute geolocation accuracy can still be computed but those 

corresponding to relative geolocation accuracy cannot.   

 

Processing – sample mean and covariance 

 

Using the above samples, compute the sample mean-value 𝑋�̅� and the sample covariance matrix 𝐶𝑖 for 

each realization 𝑖 = 1, . . 𝑚: 

 

𝑋�̅� = (1/𝑛𝑖)∑ 𝜖𝑋𝑖𝑗
𝑛𝑖
𝑗=1        2 × 1             (B.1.1-1) 

 

𝐶𝑖 = (1/𝑛𝑖)∑ (𝜖𝑋𝑖𝑗 − 𝑋�̅�)
𝑚
𝑖=1 (𝜖𝑋𝑖𝑗 − 𝑋�̅�)

𝑇
    2 × 2             (B.1.1-2) 

 

Because the error samples in a given realization are spatially correlated, we expect their 2d vector mean-

value 𝑋�̅� to be significantly different than zero.  The corresponding covariance matrix 𝐶𝑖 is computed 

relative to this mean-value.  Both 𝑋�̅� and 𝐶𝑖 are computed for general information and for use in the 

computation of corresponding sample statistics taken over all realizations as follows: 

 

Compute the sample mean-value �̅� and the sample covariance matrix 𝐶 over all realizations 𝑚, where the 

total number of error samples is defined as 𝑛_𝑡𝑜𝑡 ≡ ∑ 𝑛𝑖
𝑚
𝑖=1 : 

 

�̅� = ∑ 𝑤𝑖
𝑚
𝑖=1 𝑋�̅�, where the scalar weight 𝑤𝑖 = (𝑛𝑖/𝑛_𝑡𝑜𝑡)  2 × 1                       (B.1.1-3) 

 

𝐶 = ∑ 𝑤𝑖(𝐶𝑖
𝑚
𝑖=1 + 𝑋�̅�𝑋�̅�

𝑇
)                            2 × 2                             (B.1.1-4) 

 

The covariance matrix 𝐶 is computed equivalent to the assumption of a mean-value of error equal to zero 

and corresponds to a mean-square error.  �̅� is computed for “information only” and in support of a 

“reasonableness check” that a significant product-wide error bias is not applicable, i.e. that the absolute 

values of its components are reasonably smaller than their corresponding sigmas (standard deviations) in 

𝐶.  As detailed in Section C.2, predictive statistics in a corresponding predicted accuracy model set the a 

priori mean-value of error equal to zero and the a priori covariance matrix equal to the above 𝐶 which 

corresponds to an a priori mean-square error.  This is a reasonable (conservative) course of action given 

that error samples are from a relatively few number of realizations and is consistent with an assumed 

non-biased product until demonstrated otherwise.  Also, even if the correct (unknown) mean-value were 

non-zero (biased), its effect is still included in the magnitude of 𝐶 as computed in Equation (C.1.1-4). 
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It is recommended that a single plot of all of the individual error samples be made with different colors 

used for samples from each of the 𝑖 = 1, . . , 𝑚 different product realizations.  𝑚 individual plots of all error 

samples in each product realization 𝑖 = 1, . . , 𝑚, with their mean-value 𝑋𝑖  removed, are also 

recommended, as well as a single plot of all 𝑚 color-coded mean values.  If the mean-values are all non-

trivial and approximately the same value, the corresponding type of class of geolocation product may 

have a systematic bias that should be investigated.  The plot axes correspond to the x-component and the 

y-component of geolocation error and an individual error sample is represented as a dot in the 

corresponding 2d “error-space”. 

 

Processing – scalar accuracy metrics 

 

Each radial error sample corresponding to sample 𝑗 from realization 𝑖 is computed as follows: 

𝑟𝑖𝑗 = √𝜖𝑋𝑖𝑗
𝑇𝜖𝑋𝑖𝑗                      (B.1.1-5) 

 

The 𝑟𝑖𝑗 are ranked by increasing magnitude over all samples and all realizations and a sample CE90 is 

computed as follows: 

 

sample 𝐶𝐸90 equals the smallest ranked radial error sample such that at least 90%              (B.1.1-6) 

of the ranked radial error samples are smaller; computed assuming a total of at least  

15 samples and a total of at least 3 product realizations, otherwise set to “n/a”.    

 

Samples between realizations are assumed uncorrelated (independent) but those within the same 

realization are spatially correlated to some degree.  Independent samples are preferred in general; hence, 

Equation (B.1.1-6) is an approximation.   This approximation is simple to implement and provides at least 

minimal statistical significance for the computation of sample-based CE90 for Commodities data. 

B.1.2 Relative accuracy 

Introduction and initial definitions 

 

The following processing is somewhat more complicated in that it deals with relative differences between 

error samples in a given data/product realization, with corresponding sample statistics subsequently 

compiled over all realizations in order to characterize geolocation relative accuracy.  In addition, the 

corresponding (auto) correlation values of spatial error are computed since they are used to generate or 

fit an spdcf when populating a corresponding Geolocation Product Predicted Accuracy Model as detailed 

in Section B.2. 

 

The following is based on the definition of the random samples as defined previously in Section B.1.1:  

𝜖𝑋𝑖𝑗 as a 2 × 1 sample of horizontal error, for 𝑗 = 1, . . , 𝑛𝑖 samples in each of  𝑖 = 1, . . 𝑚 realizations of 

the data/product.   
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For convenience in the following documentation, we now assume that 𝑛𝑖 ≥ 2, i.e., each product 

realization contains at least two samples of horizontal geolocation error.  We further assume that the 

previous value for 𝑚 and corresponding realization numbering are adjusted accordingly, if necessary.   

 

For each data/product realization 𝑖, identify and compute the number of unique pairs of samples 𝑝𝑖 ≥ 1 

in that realization.  A unique pair is defined as corresponding to two error samples that have at most only 

one sample in common with any other pair of samples in the same data/product realization.   

 

Processing – relative covariance matrices and spatial correlation values  

 

Identify each unique pair of error samples, the sample numbering associated with that pair,        (B.1.2-1) 

and the total number of such pairs 𝑝𝑖  in realization 𝑖 = 1, . . , 𝑚. 

 

Define/compute the relative error sample 𝑘 corresponding to each unique pair of geolocation errors in 

the data/product realization 𝑖 as follows: 

 

 ∆𝑋𝑖𝑘 = 𝜖𝑋𝑖𝑗1 − 𝜖𝑋𝑖𝑗2 ,                      (B.1.2-2) 

𝑘 = 1, . . , 𝑝𝑖 , 𝑖 = 1. . , 𝑚, and where 𝑗1, 𝑗2 ∈ {1, . . , 𝑛𝑖}, 𝑗1 ≠ 𝑗2. 

 

There are 𝑝𝑖  relative error samples in realization 𝑖, where 𝑝𝑖 = (
𝑛𝑖

2
) or “𝑛𝑖 choose 2”. 

 

Note: the definition/convention for the difference between two error samples was specified in Equation 

(C.1.2-2) as  ∆𝑋𝑖𝑘 instead of the possibly more logical  ∆𝜖𝑋𝑖𝑘 in order to keep symbology from getting too 

cumbersome. 

 

Define/compute the relative error samples’ corresponding horizontal distances as: 

 

𝑑𝑋𝑖𝑘 = |𝑋𝑖𝑗1 − 𝑋𝑖𝑗2| ≡ √(𝑋𝑖𝑗1(1) − 𝑋𝑖𝑗2(1))
2
+ (𝑋𝑖𝑗1(2) − 𝑋𝑖𝑗2(2))

2
,                   (B.1.2-3) 

𝑘 = 1, . . , 𝑝𝑖, 𝑖 = 1, . . , 𝑚, and where 𝑗1, 𝑗2 ∈ {1, . . , 𝑛𝑖}, 𝑗1 ≠ 𝑗2.   

 

In general, 𝑋𝑖𝑗  is the 3d geolocation associated with horizontal error sample 𝜖𝑋𝑖𝑗, and 𝑋𝑖𝑗(1) and 𝑋𝑖𝑗(2) 

are its two horizontal coordinates.  (If the error samples of interest were 3d instead of horizontal error 

samples, horizontal distances are still generally applicable.) 

 

Define the total number of relative error samples over all data/product realizations as: 

 

𝑝 = ∑ 𝑝𝑖
𝑚
𝑖=1 .                       (B.1.2-4) 

 

 

Example 
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As an example, assume that we have the following 10 individual error samples taken over 𝑚 = 3 

data/product realizations (relatively few samples/realizations are used for ease of example only): 

 

𝜖𝑋11, 𝜖𝑋12, 𝜖𝑋13, 𝜖𝑋14 ;   𝜖𝑋21, 𝜖𝑋22 , 𝜖𝑋23;   𝜖𝑋31, 𝜖𝑋32, 𝜖𝑋33 

 

Thus, we have a total of 𝑝 = 12 relative error samples over three data/product realizations: 

 

∆𝑋11 = 𝜖𝑋11 − 𝜖𝑋12,  ∆𝑋12 = 𝜖𝑋11 − 𝜖𝑋13,  ∆𝑋13 = 𝜖𝑋11 − 𝜖𝑋14, 

∆𝑋14 = 𝜖𝑋12 − 𝜖𝑋13,  ∆𝑋15 = 𝜖𝑋12 − 𝜖𝑋14,  ∆𝑋16 = 𝜖𝑋13 − 𝜖𝑋14 , with 𝑝1 = 6; 

∆𝑋21 = 𝜖𝑋21 − 𝜖𝑋22 ,  ∆𝑋22 = 𝜖𝑋21 − 𝜖𝑋22,  ∆𝑋23 = 𝜖𝑋22 − 𝜖𝑋23 with 𝑝2 = 3; 

∆𝑋31 = 𝜖𝑋31 − 𝜖𝑋32,  ∆𝑋32 = 𝜖𝑋31 − 𝜖𝑋33,  ∆𝑋33 = 𝜖𝑋32 − 𝜖𝑋33, with 𝑝3 = 3. 

 

… End example 

 

Allocate the various horizontal distances 𝑑𝑋𝑖𝑘, 𝑘 = 1, . . , 𝑝𝑖, 𝑖 = 1, . . , 𝑚, and their corresponding relative 

error samples into two distance bins: “small” and “large”.  A reasonable definition of “small” is product-

use dependent and consistent with distances spanning typical features of interest in the product on the 

order of 𝑑1 meters or less.  Correspondingly, the two distance bins have corresponding distance intervals 

equal to 𝑏𝑖𝑛_𝑠𝑚𝑎𝑙𝑙 = (0, 𝑑1]  and 𝑏𝑖𝑛_𝑙𝑎𝑟𝑔𝑒 = (𝑑1, 𝑑2), where 𝑑2 is essentially √2 times the product 

width if a square product.  𝑏𝑖𝑛_𝑠𝑚𝑎𝑙𝑙 and 𝑏𝑖𝑛_𝑙𝑎𝑟𝑔𝑒 are sometimes referred to as “bin1” and “bin2”, 

respectively, for generality. 

 

Note: if too few samples with varied distances are available across the products for the applicability of 

both “small” and “large” distance bins, only one distance bin can be used.  It is termed “bin_all” and 

contains all error samples from a given product, with corresponding processing for the population of the 

Geolocation Product Accuracy Assessment Model and the subsequent Geolocation Product Predicted 

Accuracy Model (Section B.2.2) modified accordingly. 

 

Note: if enough samples are available with varied distances, more than two distance bins can be defined 

for higher fidelity, with corresponding processing for population of both the accuracy assessment model 

and the subsequent predicted accuracy model (Section B.2.2) modified accordingly.  This is typically not 

applicable for Commodities data. 

 

Compute the corresponding distance boundary separating the two distance bins and also the      (B.1.2-5) 

average distance for both bins taken over all relative error samples over all realizations: 

 

𝑑_𝑏𝑛𝑑𝑟𝑦 = 𝑑1  

     

𝑑_𝑎𝑣𝑔_𝑠𝑚𝑎𝑙𝑙 = average distance between all geolocation pairs in the small distance bin over all 

realizations 
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𝑑_𝑎𝑣𝑔_𝑙𝑎𝑟𝑔𝑒 = average distance between all geolocation pairs in the large distance bin over all 

realizations 

 

For each data/product realization 𝑖, compute the following: 

 

For all relative error samples ∆𝑋𝑖𝑘, with distances corresponding to the “small” distance bin,  

compute the corresponding relative error sample covariance matrix about an assumed mean-

value of relative error equal to zero (if there were a non-zero mean-value of error it would cancel 

out): 

 

𝑟𝑒𝑙_𝐶𝑖_𝑠𝑚𝑎𝑙𝑙 = (1/𝑝′𝑖)∑ ∆𝑋𝑖𝑘′
𝑝′𝑖
𝑘′=1 ∆𝑋𝑖𝑘′

𝑇  2 × 2,               (B.1.2-6) 

 

where 𝑝′𝑖 is the appropriate number of relative error samples in the “small”  

distance bin and 𝑘′ their appropriate index.  If 𝑝′𝑖 = 0 , set 𝑟𝑒𝑙_𝐶𝑖_𝑠𝑚𝑎𝑙𝑙 to zero, i.e., to the matrix 

02𝑥2. 

 

For all relative error samples ∆𝑋𝑖𝑘, with distances corresponding to the “large” distance bin,  

compute the corresponding relative error sample covariance matrix about an assumed mean-

value of relative error equal to zero: 

 

𝑟𝑒𝑙_𝐶𝑖_𝑙𝑎𝑟𝑔𝑒 = (1/𝑝′′𝑖)∑ ∆𝑋𝑖𝑘′′
𝑝′′𝑖
𝑘′′=1 ∆𝑋𝑖𝑘′′

𝑇  2 × 2,                 (B.1.2-7) 

 

where 𝑝′′𝑖 is the appropriate number of relative error samples in the “large” distance bin 

and 𝑘′′ their appropriate index.  If 𝑝′′𝑖 = 0 , set 𝑟𝑒𝑙_𝐶𝑖_𝑙𝑎𝑟𝑔𝑒 to zero. 

 

 

Example (continues)  

Assume the following categorization by distance bin for the previous example: 

 

The “large” distance bin corresponds to horizontal point-pair distances greater than 200 meters, and the 

“small” distance bin for point-pair distances greater than zero and less than or equal to 200 meters (values 

for illustrative purposes only). 

 

Further assume, for “convenience of example”, that: 

 

𝑑𝑋11 = |𝑋11 − 𝑋12|, 𝑑𝑋12 = |𝑋11 − 𝑋13|, 𝑑𝑋13 = |𝑋11 − 𝑋14| are within distance bin “large”, 

𝑑𝑋14 = |𝑋12 − 𝑋13|, 𝑑𝑋15 = |𝑋12 − 𝑋14|, 𝑑𝑋16 = |𝑋13 − 𝑋14| are within distance bin “small”, 

𝑝′′1 = 3, and 𝑝′1 = 3; 

 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

122 

𝑑𝑋21 = |𝑋21 − 𝑋22| , 𝑑𝑋22 = |𝑋21 − 𝑋23| is within distance bin “large”; 

𝑑𝑋23 = |𝑋22 − 𝑋23| , is within distance bin “small”, 

𝑝′′2 = 2, and 𝑝′2 = 1; 

 

𝑑𝑋31 = |𝑋31 − 𝑋32| , 𝑑𝑋32 = |𝑋31 − 𝑋33| is within distance bin “large”; 

𝑑𝑋33 = |𝑋32 − 𝑋33| , is within distance bin “small”, 

𝑝′′3 = 1, and 𝑝′3 = 1; 

 

 

Therefore, after associating relative error samples with corresponding horizontal distances, the following 

is applicable: 

  

𝑟𝑒𝑙_𝐶1_𝑙𝑎𝑟𝑔𝑒 = (1/3)∑ ∆𝑋1𝑘′′∆𝑋1𝑘′′
𝑇3

𝑘′′=1 ,  𝑟𝑒𝑙_𝐶1_𝑠𝑚𝑎𝑙𝑙 = (1/3)∑ ∆𝑋1𝑘′∆𝑋1𝑘′
𝑇6

𝑘′=4 ; 

 

𝑟𝑒𝑙_𝐶2_𝑙𝑎𝑟𝑔𝑒 = (1/2)∑ ∆𝑋2𝑘′′∆𝑋2𝑘′′
𝑇2

𝑘′′=1 ,  𝑟𝑒𝑙_𝐶3_𝑠𝑚𝑎𝑙𝑙 = (1/1)∑ ∆𝑋2𝑘′∆𝑋2𝑘′
𝑇3

𝑘′=3 . 

 

𝑟𝑒𝑙_𝐶3_𝑙𝑎𝑟𝑔𝑒 = (1/2)∑ ∆𝑋3𝑘′′∆𝑋3𝑘′′
𝑇2

𝑘′′=1 ,  𝑟𝑒𝑙_𝐶3_𝑠𝑚𝑎𝑙𝑙 = (1/1)∑ ∆𝑋3𝑘′∆𝑋3𝑘′
𝑇3

𝑘′=3 . 

 

The above has relatively simple indexing regarding 𝑘′′ due to “convenience of example”. 

… End example (continues)  

The reasonable assumptions that 𝑝′𝑖 ≥ 1 and 𝑝′′𝑖 ≥ 1for all realizations 𝑖 = 1, . . , 𝑚, are made for 

simplicity of the following equations (otherwise reduce the value of 𝑚 in the appropriate equation 

accordingly): 

 

Compute the relative error sample covariance matrix for each distance bin over all realizations: 

 

𝑟𝑒𝑙_𝐶_𝑠𝑚𝑎𝑙𝑙 = ∑ 𝑤𝑖𝑟𝑒𝑙_𝐶𝑖_𝑠𝑚𝑎𝑙𝑙𝑚
𝑖=1                              (B.1.2-8) 

 

𝑟𝑒𝑙_𝐶_𝑙𝑎𝑟𝑔𝑒 = ∑ 𝑤𝑖𝑟𝑒𝑙_𝐶𝑖_𝑙𝑎𝑟𝑔𝑒𝑚
𝑖=1  ,                          (B.1.2-9) 

 

where the scalar weight 𝑤𝑖 was defined earlier as 𝑤𝑖 = (𝑛𝑖/𝑛_𝑡𝑜𝑡), i.e., the total number of error samples 

in realization 𝑖 relative to the total number of samples over all realizations. 

 

 

Compute the corresponding representative spatial correlation values for each distance bin: 

 

𝜌 𝑠𝑚𝑎𝑙𝑙 = 1 −
(𝑟𝑒𝑙_𝐶_𝑠𝑚𝑎𝑙𝑙(1,1)+𝑟𝑒𝑙_𝐶_𝑠𝑚𝑎𝑙𝑙(2,2))

2(𝐶(1,1)+𝐶(2,2))
                 (B.1.2-10) 
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𝜌 𝑙𝑎𝑟𝑔𝑒 = 1 −
(𝑟𝑒𝑙_𝐶_𝑙𝑎𝑟𝑔𝑒(1,1)+𝑟𝑒𝑙_𝐶_𝑙𝑎𝑟𝑔𝑒(2,2))

2(𝐶(1,1)+𝐶(2,2))
                  (B.1.2-11) 

 

Recall that 𝐶 used in the above equations is the sample covariance matrix computed previously in 

Equation (C.1.1-4). 

 

Comment: Formulas B.1.2-10 and B.1.2-11 are based on the following relationship between relative 

errors, their relative and absolute covariance matrices, and their spatial correlation coefficient, assuming 

scalar errors for simplicity and corresponding to an arbitrary realization of a wide-sense stationary process 

(random field): 

 

𝐸{(𝜖𝑥1 − 𝜖𝑥2)(𝜖𝑥1 − 𝜖𝑥2)
𝑇} = 𝑟𝑒𝑙_𝜎2 = 2𝜎2(1 − 𝜌).               (B.1.2-12) 

 

 

Processing – scalar relative accuracy metrics 

 

Each radial relative error sample 𝑘 from realization 𝑖 is defined as follows: 

𝑟𝑒𝑙_𝑟𝑖𝑘 = √∆𝑋𝑖𝑘
𝑇 ∆𝑋𝑖𝑘                                 (B.1.2-13) 

 

They are further subcategorized as relative error samples from the small and large distance bins, 

𝑟𝑒𝑙_𝑟𝑖𝑘_𝑠𝑚𝑎𝑙𝑙 and 𝑟𝑒𝑙_𝑟𝑖𝑘_𝑙𝑎𝑟𝑔𝑒, respectively.  They are then ranked by increasing magnitude over all 

relevant samples and all realizations and sample rel_C90 computed as follows:            (B.1.2-14) 

 

(1) Sample 𝑟𝑒𝑙_𝐶𝐸90_𝑠𝑚𝑎𝑙𝑙 equals the smallest ranked radial error sample such that at least 90%               

of the ranked radial relative error samples in the small distance bin are smaller; computed assuming at 

least a total of 15 samples over at least 3 product realizations, otherwise set to “n/a”.  

 

(2) Sample 𝑟𝑒𝑙_𝐶𝐸90_𝑙𝑎𝑟𝑔𝑒 equals the smallest ranked radial error sample such that at least 90%               

of the ranked radial relative error samples in the large distance bin are smaller; computed assuming at 

least a total of 10 samples from at least 3 product realizations, otherwise set to “n/a”.  

B.1.3 Outputs 

Contents of the Accuracy Assessment Model (file/report): absolute accuracy 

 

Based on the above, the following are included in the populated Accuracy Assessment Model  

(file/report):                                   (B.1.3-1) 

 

 The number of realizations 𝑚 and the number of samples 𝑛𝑖 in each realization 

 The sample statistics (B.1.1-1 through B.1.1-4): 

o For each product (realization) 𝑖, the mean-value �̅�𝑖  (meters) and the covariance matrix 

about the mean-value 𝐶𝑖 (meters-squared) 
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o Combined over all product realizations, the mean-value �̅� (meters) and the covariance 

matrix about an assumed mean-value of zero 𝐶 (meters-squared) 

 Sample scalar accuracy metric, assuming enough realizations (products) were available (B.1.1-6): 

o 𝐶𝐸90 (meters) 

 Listing of all error samples for each realization and optional plot over all product realizations 

 Listing of all radial error samples for each realization and optional plot over all product 

realizations 

 Any applicable comments/observations related to the above analyses. 

 

Contents of the Accuracy Assessment Model (file/report): relative accuracy 

 

Based on the above, the following are also included in the populated Accuracy Assessment 

(file/report):                             (B.1.3-2) 

 

 The number of realizations 𝑚 and the number of samples 𝑛𝑖 in each product realization 

 The total number of relative error samples 𝑝𝑖used in each realization 𝑖 = 1, . . . , 𝑚  

(B.1.2-1) 

 Distances associated with the two (“small” and “large”) distance bins (B.1.2-5): 

o 𝑑_𝑏𝑛𝑑𝑟𝑦 (meters) 

o 𝑑_𝑎𝑣𝑔_𝑠𝑚𝑎𝑙𝑙 (meters) 

o 𝑑_𝑎𝑣𝑔_𝑙𝑎𝑟𝑔𝑒 (meters 

 Sample-based relative error covariance matrices for the two distance bins for each product 

realization 𝑖  (B.1.2-6 through B.1.2-7): 

o 𝑟𝑒𝑙_𝐶𝑖_𝑠𝑚𝑎𝑙𝑙 (meters-squared) 

o 𝑟𝑒𝑙_𝐶𝑖_𝑙𝑎𝑟𝑔𝑒 (meters-squared) 

 Supporting absolute sample-based error covariance matrix 𝐶 (B.1.1-4) 

 Sample-based relative error covariance matrices for the two distance bins averaged over all 

realizations (B.1.2-8 and B.1.2-9): 

o 𝑟𝑒𝑙_𝐶_𝑠𝑚𝑎𝑙𝑙 (meters-squared) 

o 𝑟𝑒𝑙_𝐶_𝑙𝑎𝑟𝑔𝑒 (meters-squared) 

 Sample-based (auto) correlation coefficients 𝜌_𝑠𝑚𝑎𝑙𝑙 and 𝜌_𝑙𝑎𝑟𝑔𝑒 for spatial error for both 

distance bins (B.1.2-10 and B.1.2-11): 

o 𝜌_𝑠𝑚𝑎𝑙𝑙 (unit-less) 

o 𝜌_𝑙𝑎𝑟𝑔𝑒 (unit-less) 

 Sample based scalar relative accuracy metrics corresponding to the two distance bins, assuming 

enough relative error samples and realizations available (B.1.2-14): 

o 𝑟𝑒𝑙_𝐶𝐸90_𝑠𝑚𝑎𝑙𝑙 (meters) 

o 𝑟𝑒𝑙_𝐶𝐸90_𝑙𝑎𝑟𝑔𝑒 (meters) 

 Listing of all relative error samples and their distances for each realization; optional plots of 

relative error samples over all realizations in various formats    

 Any applicable comments/observations related to the above analyses. 

B.2 Population of the predicted accuracy model 
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The following describes population of a Geolocation Product Predicted Accuracy Model for an arbitrary 

geolocation product of the same type or class as that associated with the populated Geolocation Product 

Accuracy Assessment Model described in Section B.1.   The population of the former is based on the latter, 

and refers to the related data of Section B.1.    

 

The following assumes 2d horizontal errors consistent with Section B.1 but can be easily modified for 

vertical errors or even 3d errors if so desired.   In particular, if for vertical errors, covariance matrices are 

1 × 1 instead of 2 × 2, and the sdpcf is a scalar function applicable to z errors instead of both x and y 

errors, but is still a function of horizontal location of the corresponding geolocations in the product. 

B.2.1 Absolute accuracy 

Processing – mean value and covariance 

 

The following a priori predictive statistics are computed corresponding to the horizontal geolocation error 

of an arbitrary geolocation in an arbitrary realization of the data/product.  They formally correspond to a 

single random filed (Random Field 1 in the nominal partition if for an MGRF representation).  The sample 

statistics used in the computations are via Equation (B.1.1-4). 

 

 

The 2d vector mean-value of error: 

 

�̅� = 0      2 × 1                 (B.2.1-1) 

 

𝐶𝑋 = 𝑑𝑖𝑎𝑔(𝐶)     2 × 2,                 (B.2.1-2) 

 

𝐶𝑋 is set to a diagonal matrix corresponding to the diagonals of the sample-based covariance matrix 𝐶 as 

is reasonable for Commodities data, but is not required in general.   Also, as a reasonable alternative for 

some types of product, 𝐶𝑋 is set to a diagonal matrix with each diagonal entry equal to 𝑡𝑟𝑎𝑐𝑒(𝐶)/2 or 

average eigenvalue.  This essentially removes any azimuth dependent effects as captured by the sample 

statistics, and which may not be applicable to future (arbitrary) product realizations.      

 

Processing – scalar accuracy metrics 

 

The scalar accuracy metric 𝐶𝐸90 is computed as follows: 

 

𝐶𝐸90 = 2.1460√𝑡𝑟𝑎𝑐𝑒(𝐶𝑋)/2   1 × 1                (B.2.1-3) 

 

The above computation of the predictive statistic 𝐶𝐸90 is a reasonable approximation and is also based 

on an assumed Gaussian distribution of geolocation errors.  Its inclusion in the following file/report is for 

the convenience of the down-stream user as it is a statistic that can be derived from 𝐶𝑋 which is always 

included.   
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As an option, 𝐶𝐸90 can be computed instead based on the ratio of its eigenvalues of 𝐶 as detailed in TGD 

2a (Predictive Statistics) for “higher fidelity”.  As another option, CEXX for other probability levels other 

than XX=90 can be computed and included as well.   

B.2.2 Relative accuracy 

The following predictive statistics correspond to the relative geolocation error between an arbitrary pair 

of geolocations in the realization of the data/product.  Those statistics that correspond to distance bins 

further assume that the distance between geolocations making up a geolocation pair is within the distance 

bin.  Again, all geolocations in the product (realization) correspond to the nominal partition with error 

specified by the predictive statistics of a random field (random field 1).  The sample statistics used in the 

computations of the following predictive statistics are via the associated populated Accuracy Assessment 

file/report (Equations B.1.3-1 and B.1.3-2). 

 

Processing – mean-value and covariance for relative errors 

 

Relative distances associated with the two distance bins “small” and “large”:  

            

𝑑_𝑎𝑣𝑔_𝑠𝑚𝑎𝑙𝑙 and 𝑑_𝑎𝑣𝑔_𝑙𝑎𝑟𝑔𝑒.                    (B.2.2-1)  

 

The mean-value of relative error and the associated covariance matrix for each of the distance bins are 

computed as follows: 

 

𝑟𝑒𝑙_�̅� = 0                   2 × 1,                  (B.2.2-2) 

 

𝑟𝑒𝑙_𝐶𝑋_𝑠𝑚𝑎𝑙𝑙 = 𝑑𝑖𝑎𝑔(𝑟𝑒𝑙_𝐶_𝑠𝑚𝑎𝑙𝑙)  2 × 2,                  (B.2.2-3) 

 

𝑟𝑒𝑙_𝐶𝑋_𝑙𝑎𝑟𝑔𝑒 = 𝑑𝑖𝑎𝑔(𝑟𝑒𝑙_𝐶_𝑙𝑎𝑟𝑔𝑒)  2 × 2,                  (B.2.2-4) 

 

where in general, “𝑑𝑖𝑎𝑔(𝐸)"corresponds to a diagonal matrix with diagonal elements equal to those of 

matrix 𝐸.  Diagonalization of the matrix is not required but is typically done corresponding to the 

availability of relatively few error samples.   

 

Note that 𝑟𝑒𝑙_�̅� = 0 is compatible with the representation of geolocation errors as a wide-sense 

homogenous random field with a constant mean-value �̅�.  This is seen as follows: the relative error ∆𝑋 

between two geolocations 𝑖 and 𝑗 is ∆𝑋 = 𝜖𝑋𝑖 − 𝜖𝑋𝑗, and therefore its mean-value is equal to 

𝐸{𝜖𝑋𝑖 − 𝜖𝑋𝑗} = �̅� − �̅� = 0.   

 

Processing – spdcf parameters (spatial correlation) and scalar accuracy metrics of relative error 
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A strictly positive definite correlation function (spdcf) from the “CSM 4-parameter” family of spdcf is 

assumed applicable for the representation of spatial correlation across the product, or more specifically, 

across each individual realization of the product.  This spdcf is very general and is reasonably assumed 

applicable a priori.  In addition, as a reasonable and simplifying assumptions, it is further assumed that: 

 Only the two major parameters of the four parameters (𝐴, 𝛼, 𝛽, 𝐷) that define the specific spdcf  

are “active” or non-zero: 𝐴 and the distance constant 𝐷.  

o The baseline assumption that ∝= 0 inherently assumes that the system that generates 

the geolocation products is unbiased, i.e., 𝛼𝐴 is the floor or minimum value for 

decorrelation (0 ≤ 𝛼 < 𝐴 ,where both parameters are unit-less) 

o A non-zero 𝛽 tends to decrease the rate of decorrelation at small values of distance, i.e., 

change the shape of the spdcf somewhat (0 ≤ 𝛽 < 10 and is unit-less) 

 The corresponding spdcf is assumed isotropic and applicable (common) to both the x and y 

horizontal components of error, i.e., 𝜌(𝑑𝑋) = 𝐴𝑒−𝑑𝑋/𝐷, where 𝑑𝑋 is the distance between two 

geolocations separated by ∆𝑋, i.e., 𝑑𝑋 = |∆𝑋|.  Note that the correlation function could have also 

been written in an equivalent and more general form 𝜌(∆𝑋) = 𝐴𝑒−|∆𝑋|/𝐷.  

 

The spdcf parameters are computed based on the sample statistics contained in the populated Accuracy 

Assessment file/report, and in particular, are based on two equations for two unknowns (𝐴 and 𝐷): 

 

𝜌_𝑠𝑚𝑎𝑙𝑙 = 𝐴𝑒−𝑑_𝑎𝑣𝑔_𝑠𝑚𝑎𝑙𝑙/𝐷 and 𝜌_𝑙𝑎𝑟𝑔𝑒 = 𝐴𝑒−𝑑_𝑎𝑣𝑔_𝑙𝑎𝑟𝑔𝑒/𝐷                 (B.2.2-5) 

 

The corresponding solution is: 

 

𝐷 = (𝑑_𝑎𝑣𝑔_𝑠𝑚𝑎𝑙𝑙 − 𝑑_𝑎𝑣𝑔_𝑙𝑎𝑟𝑔𝑒)/𝑙𝑛(𝜌_𝑙𝑎𝑟𝑔𝑒/𝜌_𝑠𝑚𝑎𝑙𝑙),                            (B.2.2-6) 

𝐴 = 𝑒𝑧, where 𝑧 = (𝑑_𝑎𝑣𝑔_𝑙𝑎𝑟𝑔𝑒/𝐷 + 𝑙𝑛(𝜌_𝑙𝑎𝑟𝑔𝑒)). 

 

𝑙𝑛 represents the natural logarithm and it is assumed that 0 < 𝜌_𝑙𝑎𝑟𝑔𝑒 < 𝜌_𝑠𝑚𝑎𝑙𝑙 ≤ 1 prior to 

implementing Equation (C.2.2-6).   

 

If the above inequality is not met, perform the following steps in sequential order prior to implementing 

Equation (C.2.2-6):                      (B.2.2-7) 

 If 𝜌_𝑠𝑚𝑎𝑙𝑙 > 1, set 𝜌_𝑠𝑚𝑎𝑙𝑙 = 1 

 If 𝜌_𝑙𝑎𝑟𝑔𝑒 ≤ 0, set 𝜌_𝑙𝑎𝑟𝑔𝑒 = 0.01 

 If 𝜌_𝑙𝑎𝑟𝑔𝑒 ≥ 𝜌_𝑠𝑚𝑎𝑙𝑙, set 𝜌_𝑠𝑚𝑎𝑙𝑙 = (𝜌_𝑠𝑚𝑎𝑙𝑙 + 𝜌_𝑙𝑎𝑟𝑔𝑒)/2 and then 

 𝜌_𝑙𝑎𝑟𝑔𝑒 = 𝜌_𝑠𝑚𝑎𝑙𝑙 − .01 

 If 0 < 𝜌_𝑙𝑎𝑟𝑔𝑒 < 𝜌_𝑠𝑚𝑎𝑙𝑙 ≤ 1 is still not met, the spdcf is not applicable/available, i.e., set 𝐴 and 

𝐷 to “n/a”. 

The above adjustment of the correlation values 𝜌_𝑠𝑚𝑎𝑙𝑙 and 𝜌_𝑙𝑎𝑟𝑔𝑒  is performed in order to mitigate 

the possible adverse effects of very few product realizations and/or error samples per realization, or to 

mitigate the adverse effects of grossly incorrect a priori assumptions regarding error modeling, and in 
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particular, spatial correlation characteristics.  When the above adjustment is performed, related details 

should be noted in the predicted accuracy model (file/report): relative accuracy (Equation B.2.3-2).  

 

The spdcf corresponding to Equation (C.2.2-6) is a function of the horizontal distance 𝑑𝑋 between 

geolocations: 𝜌(𝑑𝑋) = 𝐴𝑒−𝑑𝑋/𝐷.  Furthermore, 𝜌(𝑑𝑋) ≡ 1 when 𝑑𝑋 = 0. 

 

Representative scalar predicted relative metrics are computed for both distance bins as follows: 

 

𝑟𝑒𝑙_𝐶𝐸90_𝑠𝑚𝑎𝑙𝑙 = 2.1460√𝑡𝑟𝑎𝑐𝑒(𝐶𝑥) (1 − 𝜌(𝑑𝑋)), where  𝑑𝑋 = 𝑑_𝑎𝑣𝑔_𝑠𝑚𝑎𝑙𝑙;             (B.2.2-8) 

𝑟𝑒𝑙_𝐶𝐸90_𝑙𝑎𝑟𝑔𝑒 = 2.1460√𝑡𝑟𝑎𝑐𝑒(𝐶𝑥) (1 − 𝜌(𝑑𝑋)), where  𝑑𝑋 = 𝑑_𝑎𝑣𝑔_𝑙𝑎𝑟𝑔𝑒. 

 

The spatial correlation values 𝜌(𝑑𝑋) are evaluated using the spdcf.  In addition, the computation/inclusion 

of 𝑟𝑒𝑙_𝐶𝐸90_𝑠𝑚𝑎𝑙𝑙 and 𝑟𝑒𝑙_𝐶𝐸90_𝑙𝑎𝑟𝑔𝑒 is optional and for the convenience of the down-stream user as 

they are derived predictive statistics and can be computed by the down-stream user if so desired. 

 

Note: if only one distance bin is applicable (“bin_all”) with corresponding representative correlation 

value 𝜌_𝑎𝑙𝑙 in the populated accuracy assessment model, as an approximation, set 𝜌_𝑠𝑚𝑎𝑙𝑙 ≡ 0.99 and  

𝜌_𝑙𝑎𝑟𝑔𝑒 ≡ 𝜌_𝑎𝑙𝑙 and evaluate Equation (C.2.2-6) accordingly for the spdcf parameters 𝐴 and 𝐷. 

 

Optional generalization of the spdcf #1 (not recommended): 

The processing that was described above is applicable to an spdcf that is assumed common to each 

component of horizontal error and that is also assumed isotropic in form, which are reasonable 

assumptions for a geolocation product. The processing and output of sample statistics in Section B.1 

were compatible with these assumptions.  

 

However, this processing can be readily generalized to compute a different isotopic spdcf for the 

different components of horizontal geolocation error, such as 𝜌𝑥(𝑑𝑋) for errors in the x-component and 

𝜌𝑦(𝑑𝑋) for errors in the y-component, if so desired.  This is done by providing two sets of sample-

statistics for relative error in the populated accuracy assessment model – one set for relative x-error and 

one set for relative y-error, both categorized by 2d horizontal distance.  The corresponding processing in 

Section B.2 is modified accordingly, i.e., the two spdcf are generated independently.    

 

This generalization is not required for a separate assessment/prediction of 2d horizontal errors and 1d 

vertical errors.  Simply perform the baseline processing/outputs of Sections B.1 and B.2 twice – once for 

horizontal errors and once for vertical errors.  The predictive statistics for horizontal error will 

necessarily be different than the predictive statistics for vertical errors.  In particular, the predictive 

statistics for horizontal error will include a common spdcf for both the x and y components of error, and 

the predictive statistics for vertical errors will include a different spdcf. 

 

Optional generalization of the spdcf #2 (not recommended and typically not feasible): 
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If an anisotropic spdcf is to be computed instead of an isotopic spdcf, the parameters defining two 

separate spdcf must be generated: 𝐴𝑥 and 𝐷𝑥 for the spatial correlation of horizontal errors in the x-

direction and 𝐴𝑦 and 𝐷𝑦 for the spatial correlation of horizontal errors in the y-direction.   The resultant 

anisotropic spdcf is the product of these two spdcf, i.e., 𝜌(∆𝑋) = 𝐴𝑥𝑒
−|∆𝑥|/𝐷𝑥𝐴𝑦𝑒−|∆𝑦|/𝐷𝑦.  This spdcf is 

also assumed common to both components of horizontal error, i.e., 𝜌(∆𝑋) = 𝜌𝑥(∆𝑋) = 𝜌𝑦(∆𝑋), but 

can be generalized to two separate spdcf per the previous paragraph.  The computation of an 

anisotropic spdcf is not recommended for a geolocation product, as it is: (1) typically not applicable as a 

general error model, and (2) too complicated to generate, requiring too many samples of error that are 

typically unavailable, and also requires the “fitting” of four major spdcf parameters (𝐴𝑥, 𝐷𝑥, 𝐴𝑦, and 𝐷𝑦) 

instead of the deterministic computation of only two (𝐴 and 𝐷). 

 

Comment: Future applied research 

Further applied research regarding the best method(s) to populate both an accuracy assessment model 

and corresponding predicted accuracy model regarding relative errors is warranted.  Subareas of 

research include effects regarding the number of samples, the use of non-zero mean-values, and the 

identification of the appropriate spdcf family and the best methods for the computation of its defining 

parameters. 

Comment: What if only sample-based scalar accuracy metrics are available for computation of 

predictive statistics? 

The previous methodology/equations of Sections CB2.1 and B.2.2 assumed the availability of the sample 

statistics that are recommended in a populated accuracy assessment model.  In some circumstances, only 

their scalar accuracy metrics counterparts, such as CE90, may be available (see Section 5.3.5.3).  If so, the 

methodology/equations in Sections C.2.1 and C.2.2 can be “reversed engineered” for “lower fidelity” 

results if need be.  More specifically, and assuming that absolute accuracy is of interest (Section B.2.1) for 

specificity, the scalar accuracy metrics are converted to a corresponding error covariance based on the 

assumption that the components of geolocation error are uncorrelated and of equal magnitude.  For 

example, given CE90 and LE90: 

𝐶𝑋 =

[
 
 
 
 (

𝐶𝐸90

2,1460
)2 0 0

0 (
𝐶𝐸90

2,1460
)2 0

0 0 (
𝐿𝐸90

1.6449
)2

]
 
 
 
 

,  

where the multipliers correspond to the 90% probability level of the scalar accuracy metrics and the 

latter’s values are detailed in Sections 5.4.1 and 5.4.2 of TGD 2a and can be modified accordingly for any 

other probability levels of interest. 

On the other hand, if CE and LE are given as samples of radial horizontal and radial (absolute value of) 

vertical error directly (as opposed to CE90 and LE90), corresponding 𝐶𝑋 samples can be computed and 

then averaged if multiple samples are available: 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

130 

𝐶𝑋 = [
𝐶𝐸2 0 0
0 𝐶𝐸2 0
0 0 𝐿𝐸2

]. 

The statistical significance of the error covariance matrix corresponding to use of the CE90 and LE90 values 

is typically greater than that based on an individual horizontal radial error sample and/or vertical error 

sample, since a collection of individual samples were used to generate the former’s values. 

The above only addressed contingencies for absolute accuracy.  Similar processing for relative accuracy 

would require the availability of relCE90 for various distance bins. 

B.2.3 Outputs 

Contents of the predicted accuracy model (file/report): absolute accuracy 

Based on the above, the following are included in the populated accuracy assessment model  

(file/report):                                   (B.2.3-1) 

 

 The applicable definitions and the computed values of the predictive statistics and related 

quantities presented in Equations (B.2.1-1) through (B.2.1-3): 

o The mean-value �̅� (meters), nominally set to zero 

o The covariance matrix about an assumed mean-value of zero 𝐶𝑋 (meters-squared) 

o The scalar accuracy metric 𝐶𝐸90 (meters) 

 Any applicable comments/observations related to the above analyses. 

 

Contents of the predicted accuracy model (file/report): relative accuracy 

 

Based on the above, the following are included in the populated  

Predicted Accuracy Model (file/report):                    (B.2.3-2) 

 

 The applicable definitions and the computed values of the predictive statistics and related 

quantities presented in Equations (B.2.2-1) - (B.2.2-6), (B.2.2-8): 

o Relative (average) distances associated with the two distance bins “small” and “large”: 

 𝑑_𝑎𝑣𝑔_𝑠𝑚𝑎𝑙𝑙 (meters) 

 𝑑_𝑎𝑣𝑔_𝑙𝑎𝑟𝑔𝑒 (meters) 

o The mean-value 𝑟𝑒𝑙_�̅� (meters), nominally set to zero 

o The relative error covariance matrices associated with the two distance bins: 

 𝑟𝑒𝑙_𝐶𝑋_𝑠𝑚𝑎𝑙𝑙 (meters-squared) and 𝑟𝑒𝑙_𝐶𝑋_𝑙𝑎𝑟𝑔𝑒(meters-squared) 

o The correlation coefficients associated with the two distance bins: 

 𝜌_𝑠𝑚𝑎𝑙𝑙 (unit-less) and 𝜌_𝑙𝑎𝑟𝑔𝑒 (unit-less) 

o The spdcf defining parameters: 

 𝐴 (unit-less) and 𝐷 (meters) 

o The scalar accuracy metrics associated with the two distance bins: 

 𝑟𝑒𝑙_𝐶𝐸90_𝑠𝑚𝑎𝑙𝑙 (meters) and 𝑟𝑒𝑙_𝐶𝐸90_𝑙𝑎𝑟𝑔𝑒 (meters) 

 Any applicable comments/observations related to the above analyses. 
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B.3 Applications 

The section of the appendix presents a brief overview of some of the more important applications of the 

predictive statistics that are contained in a populated Geolocation Product Predicted Accuracy Model. 

 

Given the predictive statistics contained in the predicted accuracy model (file report) of Equations (B.2.3-

1) and (B.2.3-2) and computed via Equations (B.2.1-2) and (B.2.2-6), the user of the populated predicted 

accuracy model can compute, in conjunction with the applicable sensor model, the following items: 

  

The full error covariance (symmetric and positive definite) matrix corresponding to horizontal errors in 

multiple geolocations from the same but arbitrary data/product realization.  This is illustrated in the 

following example corresponding to 3 geolocations, where 𝑑𝑋𝑖𝑗  corresponds to the horizontal distance 

between arbitrary geolocations 𝑖, 1 ≤ 𝑖 ≤ 3, and 𝑗, 1 ≤ 𝑗 ≤ 3, in the realization: 

 

𝐶𝑋_𝑓𝑢𝑙𝑙 = 

𝐶𝑋 𝜌(𝑑𝑋12)𝐶𝑋 𝜌(𝑑𝑋13)𝐶𝑋

. 𝐶𝑋 𝜌(𝑑𝑋23)𝐶𝑋

. . 𝐶𝑋

 meters-squared  6 × 6,    (B.3-1) 

 

and where 𝜌(𝑑𝑋𝑖𝑗) multiplies each term of the 2𝑥2 diagonal error covariance matrix 𝐶𝑋.   

 

(If two geolocations were in different products, their corresponding off-diagonal block or cross-covariance 

matrix in Equation (B.3-1) would be defined as identically equal to zero.) 

 

In addition, the actual best estimate of the 3 geolocations are those geolocations that are actually 

identified/measured in the product; hence, corresponding errors typically include mensuration errors 

associated with these geolocations.  Thus, if the three 2 × 1 geolocation (horizontal) vectors are placed 

into a 6 × 1 column vector as the best estimate �̂�, the corresponding 6 × 6 error covariance matrix 

equals: 

 

𝐶𝑋_𝑓𝑢𝑙𝑙 → 𝐶𝑋_𝑓𝑢𝑙𝑙 + 𝐶_𝑚𝑒𝑛𝑠_𝑓𝑢𝑙𝑙        6 × 6   (B.3-2) 

  

𝐶_𝑚𝑒𝑛𝑠_𝑓𝑢𝑙𝑙 is a 6 × 6 bock diagonal matrix with each 2 × 2 block the corresponding error covariance 

matrix 𝐶_𝑚𝑒𝑛𝑠 for the mensuration error associated with measuring/identifying the corresponding 

geolocation.   

 

In general,  𝐶_𝑚𝑒𝑛𝑠 is a diagonal matrix and typically common to each of the three geolocations and 

typically containing the same variance of error for both the geolocation’s x-coordinate and the y-

coordinate: 

 

𝐶_𝑚𝑒𝑛𝑠 = [
𝜎_𝑚𝑒𝑛𝑠2 0

0 𝜎_𝑚𝑒𝑛𝑠2] meters-squared   2 × 2   (B.3-3) 

 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

132 

However, the above can vary per geolocation as well as per geolocation coordinate, if applicable. 

 

The computation of CE90 for a geolocation of interest is computed as follows:    (B.3-4)            

 

(1) 𝐶𝐸90 = 2.1460√𝑡𝑟𝑎𝑐𝑒(𝐶𝑋)/2.        

(2) If mensuration error is to be included, as above except that 𝐶𝑋 → 𝐶𝑋 + 𝐶_𝑚𝑒𝑛𝑠. 

 

The computation of rel_CE90 for two geolocations of interest separated by 𝑑𝑋 is  (B.3-5)            

computed as follows: 

 

(1) 𝑟𝑒𝑙_𝐶𝐸90 = 2.1460√𝑡𝑟𝑎𝑐𝑒(𝐶𝑥) (1 − 𝜌(𝑑𝑋)).      

(2) If mensuration error is to be included: 𝑟𝑒𝑙_𝐶𝐸90 → 𝑟𝑠𝑠{ 𝑟𝑒𝑙_𝐶𝐸90,  

2.1460√𝑡𝑟𝑎𝑐𝑒(𝐶_𝑚𝑒𝑛𝑠) }, where 𝑟𝑠𝑠 is root-sum-square. 

 

See TGD 2a (Predictive Statistics) for more exact methods than Equations (B.3-4) and (B.3-5) for different 

levels of probability. 

B.4 Performance assessment of the populated models 

Experiments (studies) were performed based on simulated data in order to further illustrate and assess 

the performance of the concepts and equations presented in Sections B.1 through B.3.  In particular, 

accuracy assessments were performed followed by the population of corresponding predicted accuracy 

models.  In addition, the resultant predicted accuracy as represented in the populated predicted accuracy 

model was compared to the “true” predicted accuracy model.  The simulated error samples were 

generated consistent with the predictive statistics contained in the “true” predicted accuracy model per 

the techniques detailed in TGD 2e (Monte-Carlo Simulation). 

B.4.1 Descriptions of the performance assessment experiments 

The true predicted accuracy model: 

Prior to describing the various experiments and corresponding results, we first “set the stage” by 

describing the baseline values for the true predictive statistics applicable to the products in the 

experiments with a common product width equal to 10 grid-units: 

(1) The true covariance matrix for horizontal errors: 𝐶_𝑡𝑟𝑢𝑒 = [102 0
0 152] meters-squared 

(2) The true spdcf parameters: 𝐴_𝑡𝑟𝑢𝑒 = 0.98 (unit-less) and 𝐷_𝑡𝑟𝑢𝑒 = 30 grid-units, or 

𝑠𝑝𝑑𝑐𝑓_𝑡𝑟𝑢𝑒 = 0.98𝑒−𝑑/30, where 𝑑 is horizontal distance in grid-units.  This spdcf is isotropic and 

common to both product x-component errors and y-component errors. 
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𝐶_𝑡𝑟𝑢𝑒 specifies the expected magnitude of errors in an arbitrary product (realization) and 𝑠𝑝𝑑𝑐𝑓_𝑡𝑟𝑢𝑒 

specifies the spatial correlation or degree of similarity of errors in the same product realization as a 

function of distance between the errors’ corresponding horizontal locations. 

The true spdcf is illustrated in Figure B.4.1-1 as a function of horizontal distance across an arbitrary line in 

the horizontal plane for convenience – see Figure 5.3.2-1-1 for the rendering of a similar isotropic spdcf 

as a function of distance across the entire horizontal plane.  The spdcf parameter 𝐴_𝑡𝑟𝑢𝑒 essentially 

specifies the correlation at very small distances and the spdcf parameter 𝐷_𝑡𝑟𝑢𝑒 specifies its exponential 

decay as a function of increasing horizontal distance. 

 

Figure B.4.1-1: strictly positive definite correlation function (spdcf) 

Figures B.4.1-2 and B.4.1-3 present the horizontal errors (2d vectors or quivers) across a grid in the 

product’s horizontal plane for two different product realizations.  In both of the figures, the errors were 

generated consistent with the above true predictive statistics (𝐶_𝑡𝑟𝑢𝑒 and  𝑠𝑝𝑑𝑐𝑓_𝑡𝑟𝑢𝑒).  The value of 

“sf” in the title of each figure is the magnitude in meters of the maximum horizontal error in the grid.   

As seen in the figures, errors are spatially correlated (similar) within the same product but independent 

(uncorrelated) between products.  This is per desired modeling and can be observed in numerous 

examples of actual 3d Point Clouds with corresponding errors generated from available “ground truth”. 
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Figure B.4.1-2: Product realization #1: horizontal errors across a horizontal gird 
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Figure B.4.1-3: Product realization #2: horizontal errors across a horizontal gird 

Definition of an experiment: 

Each experiment corresponds to a specified scenario implemented over 1000 independent Monte-Carlo 

trials with resultant performance metrics computed as an “ensemble” average over the trials. 

Definition of a scenario: 

A scenario is specified by the number of products (product realizations) and the number of error 

samples per product.  A Monte-Carlo trial consists of the generation of corresponding error samples for 

each of the products, a subsequent populated accuracy assessment model generated from the samples 

from all of these products, and finally, a subsequent populated predicted accuracy model based on the 

accuracy assessment.  As mention earlier, all error samples are generated consistent with the true 

predicted accuracy model.  Also, all products are assumed to have a common AOI or ground footprint 

with a width of 10 grid- units.   

A scenario consists of either 3, 10, or 100 products.  The number of geolocation error samples per 

product is common over all products and is equal to either 4, 7, or 10 samples.  The underlying 

geolocations associated with each error sample in each product are generated randomly. 

Geolocations corresponding to error samples in a product: 
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(1) Geolocations are grouped into local groups that contain either two or three geolocations.  There are 

multiple local groups in each product, their number dependent on the total number of error samples per 

product (4, 7, or 10) for the specified scenario. 

(2) The geolocations in a local group are randomly generated and separated uniformly from each other 

from between 0 to 0.15 grid units.  The first local group is centered in the products’ footprint and the 

other local groups are separated randomly and uniformly from the first local group.  Distances between 

the local groups are between 0 to 1/2 the product’s width.   

(3) If 4 geolocation error samples are specified per product, there are two local groups in each product, 

each containing two error samples.  If 7 error samples are specified per product, there are three local 

groups, two containing two error samples each and one containing three error samples.  If 10 error 

samples are specified per product, there are four local groups, two containing two error samples each and 

two containing three error samples each. 

Distances between geolocation pairs in a local group correspond to the “small” distance bin with a 

nominal width of 0.25 grid units.   Distances between geolocation pairs consisting of geolocations in 

different local groups correspond to the “large” distance bin with a nominal width between 0.25 and 

approximately 15 grid-units, the latter the maximum distance possible for two geolocations in a product. 

If a specified scenario contains a total of 𝑚 error samples per product, there are “𝑚-choose-2” different 

relative error samples per product.  For example, if there are 7 error samples, there are 21 relative error 

samples.   Thus, if the specified scenario also contains 10 products, there are a total of 70 error samples 

and a total of 210 relative error samples computed and used to populate the accuracy assessment models 

and subsequent predicted accuracy model for one Monte-Carlo trial. 

The relative error samples corresponding to each sample-pair are computed by differencing the 

corresponding error samples, i.e., relative error samples are not really measured, neither in the simulation 

nor operationally in the real-world – only individual error samples require measurement based on 

differencing the underlying geolocation from corresponding “ground truth”.  Note also that if the product 

width is equivalent to 10,000 meters, 0.1 grid units is equivalent to 100 meters which is assumed to be 

the typical length of interest for features in the product, and the corresponding relative error sample 

corresponding to the measurement of the feature’s length is within the “small” distance bin or “bin1”. 

The Monte-Carlo ensemble performance metric: 

Predicted CE90 and rel_CE90 at various distance bins are derived statistics computed using the populated 

predicted accuracy model.  They were selected as convenient measures of performance.  In particular, 

the “ensemble error” is computed over the 1000 Monte-Carlo trials as follows for the CE90 predictive 

statistic as a representative example: 

Average of  
|𝐶𝐸90_𝑝𝑟𝑒𝑑𝑖−𝐶𝐸90_𝑡𝑟𝑢𝑒|

𝐶𝐸90_𝑡𝑟𝑢𝑒
, computed over 𝑖 = 1, . . ,1000 Monte-Carlo trials, expressed as a % (0 

to 100). 
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See equations B.3-1 and B.3-2 for the computation of CE90_pred and rel_CE90_pred, respectively. 

CE90_true and rel_CE90_true for various distance bins are common to each trial and these “true” derived 

predictive statistics are computed using the true predicted accuracy model that was specified earlier.    

In addition, all true CE90 and rel_CE90 values are computed with virtually no approximation error per the 

techniques of TGD 2a (Predictive Statistics) regardless if non-zero mean-values are included or not in the 

additional experiments that are described later.  However, a Gaussian distribution of errors is assumed as 

is reasonable for these experiments. 

Finally, the experiments presented in Section B.4.2 do not include any simulated ground truth errors or 

mensuration errors associated with the error samples.  Section B.4.3 quantifies their effects when they 

are not negligible compared to geolocation product errors per se. 

B.4.2 Performance results 

Table B.4.2-1 presents the performance results for the first set of experiments.  There were three 

experiments, each of them corresponding to a scenario with 7 geolocation errors per product.  The 

number of products in the corresponding scenario varied per experiment.  10 products correspond to the 

“baseline” scenario (column highlighted light gold in table). 

Table B.4.2-1: Performance results for set 1 of the experiments 

 

Based on the above and for an arbitrary trial in “the future” that corresponds to the baseline scenario, we 

expect that the derived statistics CE90 and rel_CE90 computed from the populated predicted accuracy 

model will differ from their true (unknown) counterparts by approximately 11.9 % and 7.5 to 10.2 %, 

respectively.  For example, if true_CE90 were equal to 27 meters, we expect that the CE90 computed 

Each experiment corresponds to a different scenario 

Number of samples per product:

Number of products: 3 10 100

error in CE90 (%): 21.5 11.9 3.8

error in rel_CE90(%):

                        d=0.15 distance units 11.7 7.5 3.0

                        d=1 13.7 7.6 2.9

                        d=5 18.4 10.2 3.4

                       d=10 18.5 10.2 3.4

                       d=15 18.4 9.9 3.3

(light gold corresponds to experiment with baseline scenario)

Error in scalar acccuracy metrics "averaged" over all trials 

Predicted Accuracy Performance Results for 3 different experiments (set 1)

1000 trials per experiment

7

 error in metric: populated model's metric relative to true metric (%)
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based on the populated predicted accuracy model would equal approximately 27 +/- 3 meters. For the 

baseline scenario, the populated predicted accuracy model is generated based on 10 realizations of the 

product, each with 7 samples of geolocation error.   

Note: the scenario with 100 products was included in the above table in order to quantify asymptotic 

performance, as the availability of this large of number of products for accuracy assessment is not realistic 

for External Data. 

Note: for the experiment applicable to the scenario with 3 products in the above table, one of the 1000 

trials required modification of the sample correlation values 𝜌_𝑠𝑚𝑎𝑙𝑙and/or 𝜌_𝑙𝑎𝑟𝑔𝑒 per Equation (B.2.2-

7): the original 𝜌_𝑙𝑎𝑟𝑔𝑒 was slightly less than 0 and adjusted to a value of 0.01 prior to proceeding.   No 

other trials for the other scenarios in the table required adjustment.  In addition, no other trials for other 

scenarios in additional tables presented later in this appendix required adjustment unless specifically 

stated otherwise. 

Note: for each experiment, the sample “ensemble” mean was also computed over all trials and was equal 

to approximately zero as expected.  For example, the sample ensemble mean for the experiment with the 

baseline scenario (light gold column) in the above table was equal to -.06, and -0.13 for the x and y 

components of error, respectively.  However, as mentioned earlier and for an individual trial, the sample 

mean-value is typically and significantly non-zero for a given product (realization) due to the spatial 

correlation of errors within the product.  The sample-mean value taken over all product realizations in the 

trial is closer to zero due to the subsequent averaging of independent errors (mean-values).  And when 

further averaged over all trials, the ensemble mean-value of error approaches zero. 

Prior to presenting the performance results for another set of experiments, Table B.4.2-2 first presents 

details of one of the 1000 trials that made-up the experiment corresponding to the baseline scenario in 

Table B.4.2-1.  It refers to various statistics referenced in Sections B.1 through B.3.  The predictive statistics 

corresponding to the error covariance matrix, CE90, and rel_CE90 are presented for both the populated 

predicted accuracy model and the corresponding “true” predictive accuracy model, and highlighted light 

gold. Applicable units are meters for errors and “distance units” or “grid-units” for all relevant distances.  

The latter units are arbitrary as long as consistent across all distances, including the spdcf distance 

constants (D).  Listed data in the table correspond to the “outputs” of the populated Accuracy Assessment 

and the predicted accuracy models.   

 

 

 

 

 

 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

139 

Table B.4.2-2: Details corresponding to one trial of the experiment corresponding to the baseline scenario 

 

TRUE Accuracy Asessment Predicted Accuracy Corresponding

(sample statistics) (predictive statistics) Equations

SIMULATION PARAMETERS

Product width (distance units) 10

Number of products (realizations) 10

Number of error samples per product 7

total number of error samples 70

total number of relative error samples 210

ABSOLUTE ACCURACY

Mean Value (2x1):

       mean-value x  (m) 0 0.7  (info only) 0 / /B.1.1-3/B.2.1-1/

       mean-value y  (m) 0 2.1  (info only) 0

Error Covariance (2x2), diagonal:

       corresponding sigma x  (m) 10 7.8 7.8 / /B.1.1-4/B.2.1-2/

       corresponding sigma y  (m) 15 17.3 17.3

CE90  (m) 27.6 24.5 28.9 / /B.1.1-6/B.2.1-3/

RELATIVE ACCURACY

specified distance range of interest

         bin 1     aka "small" (distance units) 0<dist<=0.25

         bin 2     aka "large" (distance units) 0.25<dist<=15

total number of rel error samples per bin

          bin 1 50

          bin 2 160

average distance per bin

         bin 1 (distance units) 0.11

         bin 2 (distance units) 5.3

correlatin at average distance per bin

         bin1 0.98

         bin2 0.78

spdcf parameter A (unitless) 0.98 n/a 0.982 / / /B.2.2-6/

spdcf parameter D (distance units) 30 n/a 22.9

rel_CE90_bin 1  (m) 5.6 6.1 / /B.1.2-8/B.2.2-8/

rel_CE90_bin 2  (m) 20.4 19.2

Derived : rel_CE90 (m) for distance d

          d=0.15 (distance units) 6.1 n/a 6.4 / / /B.3-1/

          d=1      (distance units) 8.9 n/a 10.0

         d=15     (distance units) 24.8 n/a 28.6
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Table B.4.2-3 presents the performance results for a second set of experiments.  There were three 

experiments, each of them corresponding to a scenario with 10 products.  The number of error samples 

per product varied per experiment.  7 error samples per product corresponds to the “baseline” scenario 

(column highlighted light gold in table). 

Table: B.4.2-3: Performance results for set 2 of the experiments 

 

As can be seen by comparison of Table B.4.2-3 to Table B.4.2-1, given a reasonable number of error 

samples per product, the big driver regarding performance is the number of products.  Of course, if only 

1 or 2 error samples per product are available, performance of predicted relative accuracy will degrade 

appreciably and possibly not be computable, i.e., the number of samples per product would be the big 

driver. 

B.4.3 Additional sensitivity and robustness experiments 

Table B.4.3-1 presents the performance results for additional experiments in order to assess the sensitivity 

or robustness of the methods presented in Section B.1 and B.2 to more extreme situations and/or the 

presence of non-trivial mismodeling.  The scenarios are described in the table as changes relative to the 

baseline scenario described earlier (7 error samples in each of 10 products) and possibly changes relative 

to the true predictive statistics described earlier.  Each of these additional experiments also consisted of 

1000 Monte-Carlo trials. 

The more challenging experiments correspond to experiments #7 and #9 in the table, the latter the most 

challenging as it corresponds to significant mismodeling.  In the real-world, mismodeling is always present 

to some degree in that true predictive statistics never correspond to each product exactly.   

Each experiment corresponds to a different scenario 

Number of products:

Number of samples per product: 4 7 10

error in CE90 (%): 12.6 11.9 11.8

error in rel_CE90 (%):

                        d=0.15 distance units 9.3 7.5 6.5

                        d=1 10.2 7.6 6.8

                        d=5 13.6 10.2 8.5

                       d=10 13.5 10.2 8.5

                       d=15 13 9.9 8.3

Error in scalar acccuracy metrics "averaged" over all trials 

(light gold corresponds to experiment with baseline scenario)

Predicted Accuracy Performance Results for 3 different experiments (set 2)

1000 trials per experiment

10

 error in metric: populated model's metric relative to true metric (%)
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Table B.4.3-1: Performance results for robustness/sensitivity experiments 

 

 

                     Predicted Accuracy Performance Results for different robustness experiments 

                                                      1000 trials per experiment

                                    Error in scalar acccuracy metrics "averaged" over all trials 

                                error in metric: populated model's metric relative to true metric (%)

Experiment # Description: changes relative to baseline scenario Results

1 included sample mensuration error: error in CE90 (%):             11.9

 1.0 m (one sigma)

error in rel_CE90 (%):

independent errors per error sample;              d=0.15 distance units         12.3

can include the effects of uncorrelated and non-              d=1                                              7.8

negligible "ground truth" errors; baseline scenario              d=5                                              9.7

assumes negligible mensuration error, or if non-              d=10                                            9.9

negligible, considered part of product (use) error              d=15                                            9.7

2 added non-zero true mean-value of error: error in CE90  (%):              12.1

x_component=-5 m and y_component=5 m

error in rel_CE90r (%):      

resultant sample mean-value over all product              d=0.15 distance units          7.4

realizations over all trials:              d=1                                              7.7

x_component=-4.9 m and y_component=5.2 m              d=5                                              9.9

             d=10                                            9.8

             d=15                                            9.4

3 different A_true: error in CE90 (%):               11.9

A_true=1.0

error in rel_CE90 (%):       

recall that baseline A_true=0.98              d=0.15 distance units          9.5

             d=1                                            10.7

             d=5                                            10.5

             d=10                                          10.0

             d=15                                            9.6

4 different A_true: error in CE90 (%):                11.8

A_true=0.95

error in rel_CE90 (%):       

recall that baseline A_true=0.98              d=0.15 distance units          6.6

             d=1                                              6.2

             d=5                                              9.4

             d=10                                          10.0

             d=15                                            9.9

5 different D_true: error in CE90 (%):               12.9

D_true=120

error in rel_CE90 (%):      

recall that baseline D_true=30              d=0.15 distance units          6.8

             d=1                                              5.8

             d=5                                              8.4

             d=10                                            9.9

             d=15                                          10.5
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Table B.4.3-1: (continued) 

 

Experiment # Description: changes relative to baseline scenario Results

6 different D_true: error in CE90 (%):                9.6

D_true=7

error in rel_CE90 (%):      

recall that baseline D_true=30              d=0.15 distance units           8.0

             d=1                                             11.6

             d=5                                             10.7

             d=10                                            9.3

             d=15                                            8.9

7 different true spdcf (CSM 4-parameter) error in CE90 (%):               12.9

alpha_true=0.0, A_true=0.98,

beta_true=10, D_true=7 error in rel_CE90 (%):      

             d=0.15 distance units         10.6

baseline spdcf's  alpha_true=0 and beta_true=0              d=1                                             18.1

             d=5                                            11.8

             d=10                                          15.0

             d=15                                          23.0

8 different true spdcf (CSM 4-parameter) error in CE90 (%):               10.0

alpha_true=0.3, A_true=0.98,

beta_true=10, D_true=120 error in rel_CE90 (%):      

             d=0.15 distance units           6.4

resultant cor for bin1<=cor for bin2 for 48% of              d=1                                               6.0

ensemble runs; subsequently and successfully              d=5                                               5.7

adjusted a small amount per Equation (B.2.2-7)              d=10                                             8.8

             d=15                                             8.6

9 baseline truth statistics change  every third error in CE90 (%):                19.0

product (realization) to:

sigma_x=15 m, sigma_y=20 m, error in rel_CE90 (%):

A_true=0.98, D_true=20              d=0.15 distance units         21.9

             d=1                                             27.0

contrary to baseline assumption that the same              d=5                                             28.4

true predictive statistics are applicable to each              d=10                                           27.2

product; truth is weighted average              d=15                                           26.0

10 true covariane has non-zero x-y correlation error in CE90 (%):                13.0

x-y correlation = 0.5 resulting in non-diagonal 

covariance matrix error in rel_CE90 (%):

             d=0.15 distance units           7.9

             d=1                                               8.5

             d=5                                             11.3

             d=10                                           11.3

             d=15                                           11.0

11 10th product has only 2 error samples error in CE90 (%):                12.6

2 samples instead of the baseline 7 for the other

9 product (realizations) error in rel_CE90 (%):

             d=0.15 distance units           7.6

             d=1                                               8.0

             d=5                                             10.6

             d=10                                           10.7

             d=15                                           10.5
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The results presented in the above table indicated that the methods presented in Sections B.1 and B.2 for 

the population of an Accuracy Assessment and predicted accuracy model are reasonably robust.  A 

summary of the majority of the experiments is presented below. 

Robustness experiment #1: Added mensuration error  

The baseline scenario assumes no “additional” mensuration errors or ground truth errors associated with 

the error samples.  However, this robustness experiment does so as follows: 

Simulated mensuration errors of 1 meter (one-sigma) are added to the error samples that are 

used to populate the Accuracy Assessment and subsequently the predicted accuracy model.  They 

are modeled as uncorrelated between error samples, or more specifically, as uncorrelated errors 

in the identification/measurement of geolocations conjugate to known ground truth locations.  

The added errors can also be considered to include uncorrelated ground truth errors as well. 

Results of the experiment are as expected relative to the baseline scenario – primarily a moderate 

increase in the error in the computation of rel_CE90 relative to its true value at a distance d=0.15 

due to the addition of the mensuration errors to the errors in the product per se.  This increase is 

apparent at very small distances since mensuration error is uncorrelated between error samples 

or measurements.  

If “additional” mensuration errors were instead to be considered as inherent or applicable to the 

use of the product in general and not added explicitly, their effect could be approximated as a 

corresponding slight increase in the error covariance matrix 𝐶𝑋 and a slight decrease in the spdcf 

parameter 𝐴 for the predicted accuracy model that are computed per Section B.2.  

Correspondingly, if such changes were made to the true predicted accuracy model and the 

experiment performed again, there would be little difference in the results between it and the 

(revised) baseline scenario. 

Robustness experiment #2: True mean-value of geolocation product error not equal to zero 

Results are as expected – essentially no change relative to the baseline scenario.  This is due to: (1) 

computation of the error covariance matrix in the predicted accuracy model based on a sample error 

covariance matrix computed as a mean-square error in the accuracy assessment, and (2) the cancellation 

of a common non-zero mean value of error in relative error.  Of course, overall performance could be 

improved (smaller predicted accuracy) if the corresponding bias associated with the non-zero mean-value 

was detected and removed from the system that generates the products. 

Robustness experiments #3-6: Extreme values for the true spdcf parameters A_true and D_true 

Results are as expected – essentially no change relative to the baseline scenario.  This comes as no surprise 

since the fundamental assumptions of the predicted accuracy model remain applicable.  Results also 

indicate reasonable robustness or non-sensitivity to more extreme values for the true spdcf parameters 
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that affect the error samples and their spatial correlations that are used to populate the accuracy 

assessment model and subsequent predicted accuracy model. 

Robustness experiments #7-8: Use of all parameters in the “CSM four parameter spdcf” for the true spdcf  

Results indicate an increase in the error in the computation of rel_CE90 at the larger distances when the 

true value of D is small in conjunction with the true value of beta large (max value allowed) for experiment 

#7.  However, the degradation in performance is not extreme.  Results for experiment #8 actually improve 

overall performance due to actual errors (samples) that are more spatially correlated – it is easier to solve 

for their predictive statistics.  In particular, due to the non-zero value of the true alpha, there is actually a 

corresponding common error (“bias”) in all of the products for a given trial, although it does not make up 

all of the error.  Recall that for both experiments, the spdcf that is solved for as part of the predicted 

accuracy model is limited to solving for the spdcf parameters A and D only, i.e., alpha and beta are 

assumed to equal zero in the populated predicted accuracy model. 

Robustness experiment #9: Extreme mismodeling  

The errors in the computation of CE90 and rel_CE90 in experiment #9 relative to their true counterparts 

are approximately twice as large for CE90 and three times as large for rel_CE90 as compared to the 

experiment with the baseline scenario presented in Section B.4.2.  For example, the error in the 

computation of CE90 for the baseline scenario is 11.9% in Tables B.4.2-1 and B.4.2-3 and is 19.0% for the 

robustness experiment #9 in Table B.4.3-1 above.  This is as expected due to the relatively extreme 

mismodeling corresponding to this particular robustness experiment – the true predicted error model 

changes dramatically every third product.  There is essentially no way around this “degradation” of 

performance.  However, the “good news” is that the predicted accuracy model “averages” the results as 

is reasonable and as long there are a reasonable number of products that are available. 

Of course there are other possible forms of non-trivial mismodeling.  For example, if the true predicted 

accuracy model corresponds to errors represented by an affine transformation with significant scale 

and/or rotational parameters (see Section D.3 for further details applicable to image errors instead of 

geolocation product errors).  This true predicted accuracy model does not correspond to a homogenous 

random field for the representation of errors since corresponding predicted accuracies vary per 

corresponding location(s) in the product, contrary to the assumptions inherent to the Geolocation 

Predicted Accuracy Model.  However, the latter’s performance should still do reasonably well for External 

(Commodities) Data.  For example, one possible significant effect of the affine model is the reduction of 

relative errors corresponding to large distances in the product due to the possible cancellation of errors 

of large magnitudes in opposite directions – that is, spatial correlation becomes significantly negative.  

However, this is mitigated by ensuring that the representative sample correlation value corresponding to 

the large distance bin for relative error is non-negative and close to zero (hence, the distance constant D 

very large) via Equation B.2.2-7 used in the population of the Geolocation Product Predicted Accuracy 

Model. 

B.4.4 Summary 
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In summary, Tables B.4.1-1, B.4.1-3, and B.4.3-1 illustrate that the methods for the population of Accuracy 

Assessment and predicted accuracy models presented in Sections B.1 and B.2 work well given relatively 

few products (product realizations) and relatively few samples of error per product that is typical for 

External (Commodities) Data.  Of course, the more products and the more error samples available per 

product, the better the results as parameterized in Tables B.4.1-1 and B.4.1-3.  Results are also reasonably 

robust to more extreme scenarios including mismodeling as detailed in Table B.4.3-1. 

B.5 Extension of results 

The following presents various extensions to the methods/equations presented in the previous sections 

of Appendix B. 

B.5.1 All components of 3d geolocation error 

Sections B.1 and B.2 addressed accuracy assessment and predicted accuracy for horizontal geolocation 

errors only.  A reasonable and practical approach to address 3d errors assumes that horizontal and 

vertical errors are uncorrelated and is outlined as follows: 

(1) Perform the processing of Section B.1 and B.2 for horizontal errors – term the resultant predicted 

error covariance matrix and spdcf (common to both x and y errors) as 𝐶𝑋_ℎ𝑜𝑟 and 𝜌_ℎ𝑜𝑟(𝑑𝑋), 

respectively. 

(2) Perform the processing of Section B.1 and B.2 again but modified such that errors are vertical errors, 

i.e., all error samples, sample statistics, and predictive statistics correspond to 1d errors; for example, all 

error covariance matrices are 1𝑥1 and the spdcf is applicable to z errors (vertical or elevation errors) 

only.  Thus, corresponding processing is even simpler than for horizontal errors.  Term the resultant 

predicted error covariance matrix and spdcf as 𝐶𝑋_𝑣𝑒𝑟𝑡 and 𝜌_𝑣𝑒𝑟𝑡(𝑑𝑋), respectively. 

(3) Various derived statistics, such as CE90 and rel_CE90 can be computed using the outputs of (1).  

Various derived statistics, such as LE90 and rel_LE90 can be computed using the outputs of (2).  In 

addition, the 3 × 3 predicted error covariance matric and the 3 × 1 predicted spdcf 𝜌_3𝑑(𝑑𝑋) that are 

applicable to all components of 3d error are computed and output as follows: 

𝐶𝑋_3𝑑 = [
𝐶𝑋_ℎ𝑜𝑟 02𝑥1

01𝑥2 𝐶𝑋_𝑣𝑒𝑟𝑡
], and                     (B.5.1-1) 

𝜌_3𝑑(𝑑𝑋) = [𝜌_ℎ𝑜𝑟(𝑑𝑋) 𝜌_ℎ𝑜𝑟(𝑑𝑋) 𝜌_𝑣𝑒𝑟𝑡(𝑑𝑋)]𝑇. 

From these outputs, the down-stream user or application can compute the full 3d error covariance for 

an arbitrary set of points in the product as follows, assuming two points for convenience that are 

separated by a horizontal distance 𝑑𝑋1 2: 

𝐶𝑋_𝑓𝑢𝑙𝑙_3𝑑 = ⌈
𝐶𝑋_3𝑑 𝑆(𝐶𝑋_3𝑑)

. 𝐶𝑋_3𝑑
⌉, a 6 × 6 error covariance matrix, where the                             (B.5.1-2) 
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 3 × 3 matrix  𝑆 = 

𝜌_ℎ𝑜𝑟(𝑑𝑋1 2) 0 0
0 𝜌_ℎ𝑜𝑟(𝑑𝑋1 2) 0
0 0 𝜌_𝑣𝑒𝑟𝑡(𝑑𝑋1 2)

. 

 

The assumption that horizontal and vertical errors are uncorrelated used in the above approach is both 

reasonable and straight-forward, but not required.   Explicit 3d error samples and “full” 3d sample and 

predictive statistics (e.g., a full 𝐶𝑋_3𝑑 in Equation B.5.1-1) are possible with the extension of Sections B.1 

and B.2 processing and outputs from 2d to explicit 3d.  However, processing will become more 

complicated. 

B.5.2 Support of MGRF representation of predicted accuracy 

The predicted accuracy model detailed in Section B.2 assumes that an MGRF representation of predicted 

accuracy is not applicable, i.e., that there are either no partitions in the product or that there is only one 

(“nominal”) partition that is applicable to all geolocations in the product.  This is also true for the accuracy 

assessment model detailed in Section B.1.  Together, such accuracy assessment and predicted accuracy 

models are “standard” or baseline models for a geolocation product. 

The MGRF extends predicted accuracy such that it can vary over the product, i.e., a different set of 

predictive statistics or their combination is applicable to different collections of geolocations in the 

product.  The MGRF is documented in Appendix E, but its explicit population is not covered in detail.  Such 

population relies on the techniques presented in Sections B.1 and B.2 for the population of an accuracy 

assessment and subsequent predicted accuracy model, but extended to or categorized by relevant 

partitions in the product.  The partitions also need to be identified (textually described) and include a 

corresponding and approximate a priori probability of their occurrence, i.e., the probability that an 

arbitrary geolocation in the product corresponds to that partition.    In particular, the accuracy assessment 

model groups sample statistics by corresponding and identified partition or collection of geolocations, 

and the predicted accuracy model groups corresponding predictive statistics in a similar manner. 

This, in turn, requires initial sample-based statistical analysis to identify said partitions.  One possible 

approach is based on the MATLAB function “fitgmdist”, available in the Statistics and Machine Learning 

toolbox.  It can be used to identify partitions corresponding to a fit of the entire set of error samples to a 

Gaussian Mixed probability distribution.  A more straightforward approach is to view the error samples 

across a rendering of the geolocation product(s), and group errors with similar characteristics.   

The “nominal” partition corresponds to the nominal group of error samples that are typical and is 

designated as partition #1.  Geolocations in a product correspond to this partition by default.  If a group 

of error samples exhibits large errors as compared to the nominal group, underlying and similar 

geolocations correspond to a unique partition #m>1.  For example, if a certain type or class of products of 

interest contains EO-derived 3d Point Clouds, such a partition corresponds to geolocations that were 

difficult to generate due to various anomalies as described in Appendices E and G.  The partition is also 

described textually, such as “all geolocations corresponding to ‘melted roof-top edges’”.  Correspondingly, 
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the down-stream user/application can readily identify any such geolocation of interest by visualization of 

the product and possibly by automated or automatic means.  Correspondingly, the predictive statistics 

corresponding to partition #m are applicable to this geolocation and to any other geolocations associated 

with the partition. 

B.5.3 Recommended applied research 

Additional methods to populate the accuracy assessment and predicted accuracy models are of interest, 

including the fitting of the spdcf based on more relative accuracy bins when enough error samples are 

available.  This also includes generalization of the spdcf to the use of all parameters in the “CSM four 

parameter” spdcf family for possible higher fidelity regarding the representation of spatial correlation.  

In addition, possible methods for population of an anisotropic spdcf are of interest. 

The detection/editing of outliers in the error samples based on techniques similar to those detailed in 

TGD 2d (Estimators and their Quality Control) are of interest and are to be included as part of Section 

B.1 processing. 

Applied research regarding support for the population of an MGRF per the above discussion in Section 

B.5.2 is of interest. 

 

 Geolocation Data Accuracy Models – the basics 

This appendix describes the basics of the Geolocation Data Accuracy Assessment Model and the 

Geolocation Data Predicted Accuracy Model: Measurement-Space:  

 their corresponding contents 

 methods for their population based on the computation of sample-statistics and predictive 

statistics 

 applications 

The models that are detailed in this appendix are illustrated in Figure C.1 in red.  The populated 

Geolocation Data Accuracy Assessment Model is used to populate the corresponding Geolocation Data 

Predicted Accuracy Model: Measurement-space.  Both models correspond to a specific type or class of 

geolocation data assumed to be an image and its metadata (e.g., Small-Sat image) as is typical and also 

for convenience of description.   



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

148 

 

Figure C-1: Models described in this appendix (red) 

 

In particular, Sections C.1 and C.2 of the appendix describes the processing required to populate an 

accuracy assessment model and corresponding predicted accuracy model, respectively, for Geospatial 

Data assumed to be an image and its metadata for specificity.  Both of these models assume that errors 

are 2d image location errors that represent the summed and equivalent effects of various error sources 

on the ground-to-image transformation as represented by the image meta-data, primarily underlying 

errors in sensor pose.  It is also assumed that there are relatively few samples of image location errors 

available.  Processing is also extendable in a straightforward manner to 2d image errors alternatively 

expressed in horizontal ground-space as was previously discussed in Section 5.3.2.4. 

 

Processing in both Sections C.1 and C.2 are virtually the same as described in Sections B.1 and B.2 for a 

geolocation product, respectively, where errors of interest were assumed to be horizontal ground-space 

errors – just substitute 2d image location errors for 2d horizontal geolocation errors.     Thus, sections C.1 
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and C.2 essentially just “point to” the corresponding sections B.1 and B.2, respectively, and where the 

latter also include their various subsections.     

 

Note: image location error samples can be computed in a straight-forward manner as follows:  

Identify/measure a 3d ground truth geolocation in an image of interest as a measured image location 

(line, sample).  Compute the corresponding image location using the ground truth location and the 

ground-to-image function.  The horizontal error sample is simply the difference between these two image 

locations. 

 

In addition, the notation for the basic 2 × 2 error covariance matrix in the predicted accuracy model 

changes from 𝐶𝑋 in Section B.2 to simply 𝐶 in Section C.2 with the removal of the geolocation subscript 𝑋 

in order to further document that errors now correspond to image location errors instead of geolocation 

errors.  In addition, the functional notation for an spdcf changes as well: from 𝜌(𝑑𝑋) in Section B.2 to 

𝜌(∆𝑚) in Section C.2, where ∆𝑚 corresponds to the difference in image locations instead of 𝑑𝑋 which 

corresponds to the difference in geolocations.  The notation for the parameters 𝐴 and 𝐷 which detail an 

spdcf remain the same for both sections and should be clear from context. 

 

However, there can be some differences between predicted accuracy model processing for an image and 

predicted accuracy model processing for a geolocation product, as opposed to just their symbology, as 

described in Section C.3.  In particular, Section C.3 describes optional processing and corresponding 

outputs for the inclusion of predictive statistics associated with sensor-mensuration error for an image.  

It also includes optional processing for the inclusion of predictive statistics that represent the temporal 

correlation of errors between images.  If applicable, such images are typically same-pass images with 

times of applicability on the order of a few minutes. 

 

Section C.4 discusses application for the predicted accuracy model for image data.  It differs from the 

corresponding Section B.3 due to inherent difference between applications for a geolocation product 

(e.g., 3d Point Cloud) and applications for geolocation image data.  The latter requires additional 

processing in order to generate corresponding geolocations and predicted accuracies.  The resultant error 

covariance matrices and related quantities are represented as 𝐶𝑋, where the subscript “𝑋” now 

corresponds to a geolocation(s) computed from an images(s), not a geolocation contained in a geolocation 

product per se as in Appendix B. 

 

This appendix (Appendix C) is referenced in Section 5.3.4 of the main body of this document as well as in 

various other appendices that refer to the basic processing regarding the computation of sample statistics 

and predictive statistics presented in Appendix C.  In particular, it is referenced in Appendix D that 

describes adjustment of an image based on a correction grid and that relies on the populated predicted 

accuracy model that is described in Section C.2.  A roadmap to the remainder of Appendix C is as follows:  

 

Roadmap to Appendix C sections 

C.1 Population of the accuracy assessment model 
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C.2 Population of predicted accuracy model 

C.3 Optional processing 

 C.3.1 Sensor-mensuration error and predicted accuracy 

 C.3.2 Predicted accuracy regarding temporal correlation (same-pass images) 

 C.3.3 Generalization of the spdcf 

C.4 Applications 

C.1 Population of the accuracy assessment model 

Processing and outputs for the same type or class of images is essentially identical to that described in 

Section B.1 for the same type or class of geolocation products.  Processing/outputs includes the accuracy 

assessment of both absolute errors and relative errors. 

Simply redefine error samples as follows: 

Define 𝜖𝑋𝑖𝑗 as a 2 × 1 sample of image location error corresponding to from 𝑗 = 1,… , 𝑛𝑖 image locations 

in from 𝑖 = 1, . . , 𝑚 images (independent realizations).  In general, image location errors corresponding to 

image locations in the same image are spatially correlated, but are independent (uncorrelated) with image 

location errors from different images.  Spatial correlation is function of the distance (typically units of 

pixels) between image locations (line,sample) in the same image.  (See Section C.3 for a possible exception 

regarding the correlation of errors between same-pass images.) 

 

Error samples are also assumed individual error samples from an image (realization), and not 

“representative” error samples from the image used in the analysis described in Section 5.3.5.3 of the 

main body of this document.  Representative error samples are essentially average (rms) error samples 

and do not support the assessment of relative errors and/or the spatial correlation of errors. 

C.2  Population of the predicted accuracy model 

Processing and outputs for the same type or class of images is essentially identical to that described in 

Section B.2 for the same type of class of geolocation products per the redefinition of error samples 

described above in Section C.1.  Processing/outputs includes the accuracy assessment of both absolute 

errors and relative errors. 

 

In addition, recall that notation changes somewhat for an image as described in the introduction to this 

appendix.  In particular, the two key predictive statistics for an image computed per Section C.2 are as 

follows: 

 

 𝐶,            (C.2-1) 

 

which represents the 2 × 2 error covariance matrix for an image, and is applicable to an arbitrary image 

location in the image; and the functional notation for the 𝑠𝑝𝑑𝑐𝑓: 
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𝜌(∆𝑚),            (C.2-2) 

  

which represents the scalar-valued spdcf for an image, and is applicable to the spatial correlation of errors 

in the same image with corresponding image locations separated by the 2 × 1 difference vector ∆𝑚 in 

image-space.  The 𝑠𝑝𝑑𝑐𝑓 is also assumed applicable to (common to) errors in both the image line 

coordinates and the image sample coordinates unless specifically designated otherwise. 

C.3 Optional processing 

If the general reader is not interested in optional processing, please proceed to Section C.4 for applications 

of the populated predicted accuracy model for an image. 

The various categories of optional processing are all related to modification or extension of the key 

predictive statistics computed and output via Section C.2:  

(1) The 2 × 2 error covariance matrix 𝐶 with units of pixels-squared, and about an assumed mean-value 

of error equal to zero – see Equation (C.2-1). 

(2) The spdcf which is represented functionally as 𝜌(∆𝑚) – see Equation (C.2-2).  It is assumed that the 

spdcf is of the form 𝜌(∆𝑚) = 𝐴𝑒−|∆𝑚|/𝐷, where ∆𝑚 is the difference between two image locations in the 

same image and |∆𝑚| is the corresponding distance.  The spdcf is isotropic and assumed applicable to the 

spatial correlation of errors in both the line coordinates and the sample coordinates in the image (both 

components of error) unless specifically designated otherwise.   

Note: 𝜌(∆𝑚 = 02𝑥1) ≡ 1, and if 𝐴 < 1, then (1 − 𝐴)𝐶 equals the covariance matrix of the subcomponent 

of image error that is spatially uncorrelated, i.e., “totally” random.  (1 − 𝐴) is a scalar that multiples each 

element of the covariance matrix 𝐶. 

The above summarized the baseline key predictive statistics.  Their optional modifications are as described 

below: 

1. Generalization of the spdcf: (a) there is a different spdcf for each component of error, (b) the 

spdcf is anisotropic, and (c) the spdcf is from the “CSM four parameter” family and utilizes all four 

of the defining parameters.  These various suboptions are independent, e.g., there can be a 

different spdcf for errors in the image line direction and for errors in the image sample direction, 

in addition, they can be either be isotropic or anisotropic in form.  See Section C.3.1 for further 

details. 

2. The addition of predictive statistics for additive sensor-mensuration error.  See Section C.3.2 for 

further details. 

3. The addition of an spdcf for the representation of the temporal correlation of errors between 

same-pass images.  See Section C.3.3 for further details. 

C.3.1 Generalization of spdcf 
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The baseline processing described in Appendix C assumes an isotropic spdcf of the general form 𝜌(∆𝑚) =

𝐴𝑒−|∆𝑚|/𝐷 as is reasonable assuming that relatively few samples of error are available and that the 

processing is to be relatively simple.  It is further assumed that the spdcf is applicable to errors in both the 

line and sample coordinates of an image.  However, various options can change these assumptions: 

(a) Regarding a different (non-common) spdcf for different components of error – see Section B.2.2 which 

outlined a relatively straight-forward option to solve for a different (isotropic) spdcf for different 

components (x and y) of horizontal errors: one spdcf for x-errors and one spdcf for y-errors.  This is directly 

applicable to image errors, if so desired – just substitute errors in the line coordinate for x-errors and 

errors in the sample coordinate for y-errors.  This option should only be utilized if underlying design 

analysis or detailed accuracy assessments indicate its suitability and corresponding positive impact 

(increased fidelity). 

(b) Regarding an anisotropic spdcf – see Section B.2.2 which also outlined another option to compute 

spdcf that are not isotropic, i.e., if applied to image errors, would compute an anisotropic spdcf that is the 

product of two spdcf, one a function of distance in the line direction and one a function of distance in the 

sample direction: 

 𝜌(∆𝑚) = 𝐴𝑙𝑒
−|∆𝑙|/𝐷𝑙𝐴𝑠𝑒

−|∆𝑠|/𝐷𝑠.                   (C.3.1-1) 

This above spdcf is also assumed common to both the line coordinate and the sample coordinate of image 

errors.  See figure 5.3.2.1-1 for a comparison between isotropic and anisotropic spdcf.  

However, computation of an anisotropic spdcf is more difficult than the baseline computation of an 

isotropic spdcf in that four dominant parameters must be fit (𝐴𝑙, 𝐷𝑙, 𝐴𝑠, 𝐷𝑠) instead of the deterministic 

solution for only two dominant parameters (𝐴 and 𝐷).  However, when applicable, a priori knowledge of 

the imaging system may be included that allows for an easier solution of the four parameters, such as: (1) 

a priori estimates for some of the parameters, such as  𝐴𝑙  and 𝐷𝑙, or (2) if errors are more highly correlated 

in the sample direction than in the line direction, 𝐷𝑙 = (0.1)𝐷𝑠, for example.   

In general, computation of parameters applicable to both the line direction and the sample direction also 

require the availability of more error samples for more “observability” into the spatial correlation along 

both of these directions in the image. 

(c) Assuming that candidate spdcf are from the four-parameter CSM family, as is reasonable and also 

supported by many current APIs, there is another generalization possible for an (isotropic) spdcf: the spdcf 

utilizes all four of the parameters (𝐴, 𝛼, 𝛽, and 𝐷): 

𝜌(∆𝑚) = 𝐴(𝛼 +
(1−𝛼)(1+𝛽)

𝛽+𝑒|∆𝑚|/𝐷) ).                            (C.3.1-2) 

However, the added complexity of solving for all four of these parameters instead of just two (𝐴 and 𝐷) is 

typically not considered warranted – the dominant parameters (𝐴, and 𝐷) are considered more than 

adequate for reasonable fidelity, i.e., parameters 𝛼 and 𝛽 are not solved for (set to zero). 
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Summary regarding spdcf generalizations: 

In summary, optional generalizations of spdcf are difficult, particularly those corresponding to options (b) 

and (c) above, given the constraints regarding a limited number of error samples and the desire for 

relatively simple processing as deemed appropriate for Commodities data.  However, they can be done, 

typically with additional a priori knowledge embedded into the processing.  Option b, which generates an 

anisotropic spdcf, could be particularly useful for images that are scanned images and that may have 

significantly different spatial correlation characteristics in the line direction than in the sample direction.  

This requires future applied research.  However, it is important that designers of applications take into 

account that these generalizations may become available. 

C.3.2 Sensor-mensuration error and predicted accuracy 

Sometimes it is convenient to separate the predictive statistics into two groups applicable to two different 

types of errors when the geolocation data is an image: strictly image errors and sensor-mensuration (high 

frequency errors, aka “unmodeled errors”).  This may also be of use when utilizing APIs that expect such 

a separation.   

In general, image errors are represented by a 2 × 2 error covariance matrix 𝐶 and by an spdcf 𝜌(∆𝑚), 

where the latter is represented by parameters 𝐴 and 𝐷, and sensor-mensuration errors are represented 

by a 2 × 2 error covariance matrix 𝐶𝑠𝑚 and by an spdcf 𝜌_𝑠𝑚(∆𝑚), where the latter is represented by 

two parameters 𝐴_𝑠𝑚 and 𝐷_𝑠𝑚.  Correspondingly, the resultant error for an arbitrary location in the 

image is the sum of these two types of errors which are also assumed to be uncorrelated with each other. 

Note: The above assumes a common and isotropic spdcf for image errors and a common and isotropic 

spdcf for sensor–mensuration errors, but both can be generalized per the optional processing described 

in Section C.3.1. 

If given the original image errors and their predictive statistics only, and if the (original) spdcf parameter 

𝐴 is less than 1 as is typical, these predictive statistics can be “separated” into (1) a modified set of 

predictive statistics for the image errors per se, and (2) a set of predictive statistics corresponding to 

sensor-mensuration error as follows: 

Sensor-mensuration error predictive statistics:                   (C.3.2-1) 

𝐶𝑠𝑚 = (1 − 𝐴)𝐶, in pixels-squared, where the scalar (1 − 𝐴) multiplies each element of the (original) 

covariance matrix 𝐶; 

𝜌_𝑠𝑚(∆𝑚) = (𝐴_𝑠𝑚)𝑒−|∆𝑚|/𝐷_𝑠𝑚, where 𝐴_𝑠𝑚 = 1 and 𝐷_𝑠𝑚 << 1, i.e., essentially representing 

spatially uncorrelated errors, where 𝐴_𝑠𝑚 is unit-less and ∆𝑚 and 𝐷_𝑠𝑚 have units of pixels. 

The set of predictive statistics for image errors are then modified as follows:                             (C.3.2-2) 

𝐶 → (𝐴)𝐶; 
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𝜌(∆𝑚) = (𝐴)𝑒−|∆𝑚|/𝐷, where 𝐴 = 1 and 𝐷 remains unchanged. 

The outputs corresponding to the processing of Section C.2 are modified and identified                (C.3.2-3) 

accordingly: 

 
Original outputs {𝐶 and 𝜌(∆𝑚)} become {𝐶 and 𝜌(∆𝑚) from Equation (C.3.2-2), 𝐶𝑠𝑚and 𝜌_𝑠𝑚(∆𝑚)} from 

Equation (C.3.2-1). 

 

Another option consists of obtaining a populated a priori sensor-mensuration error model by other 

means.  In this case, instead of “backing them out” from the predictive statistics for image error, a 

somewhat conservative sub-option is to leave the baseline key predictive statistics unmodified and to 

append the sensor-mensuration error predictive statistics in a manner similar to Equation (C.3.2-3). 

C.3.3 Temporal correlation 

If it is determined that the errors in “same-pass” images are correlated, such temporal correlation can be 

optionally modeled as such via an spdcf functionally represented as 𝜌_𝑡𝑖𝑚𝑒 = (𝐴_𝑡𝑖𝑚𝑒)𝑒−𝑑𝑡/𝑇, where 

0 < 𝐴_𝑡𝑖𝑚𝑒 ≤ 1, 𝑇 is the time constant in seconds, and 𝑑𝑡 is the absolute value of the difference in the 

image times of applicability in seconds.  This spdcf, typically termed a “temporal spdcf”, can then be used 

to compute the appropriate correlation of errors between multiple image measurements in a MIG 

extraction of a common ground location, such as a stereo extraction. 

Note: The above assumes a common and isotropic temporal spdcf for image errors, but can be generalized 

per the optional processing described in Section C.3.1. 

In order to estimate the parameters 𝐴_𝑡𝑖𝑚𝑒 and 𝑇 defining such an spdcf, the processing described in 

Section C, and thus Section B, would require augmentation in order to compute sample-values of the 

temporal correlation (coefficient) corresponding to either one or two “time bins”.  This processing 

requires grouping images into appropriate “image-pairs” based on their times of applicability. 

Such processing is not detailed further in this document.  However, it is important that designers of 

applications take into account that such a temporal spdcf may be made available. 

C.4 Applications 

The following utilizes the two key predictive statistics contained in a populated predicted accuracy model 

for an image as computed per Section C.2: the 2 × 2 error covariance matrix 𝐶 and the scalar-valued spdcf 

𝜌(∆𝑚).  The spdcf is also assumed common to both line and sample errors.   

With the availability of these two predictive statistics, numerous geolocation applications and derived 

predictive statistics can be computed in conjunction with the applicable sensor model.  Some of them are 

illustrated below: 
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The full (symmetric) error covariance matrix correspond to multiple image locations corresponding to 

multiple ground location (features) measured in the same image is computed as follows assuming two 

image locations for convenience: 

𝐶_𝑓𝑢𝑙𝑙 = [
𝐶 𝜌(∆𝑚1 2)𝐶
. 𝐶

] pixels-squared        (C.4-1) 

where ∆𝑚1 2 is the distance (pixels) in image-space between the two image locations and the above 

scalar-valued 𝜌(∆𝑚1 2) multiplies each element of the error covariance matrix 𝐶.   

Note: If the two image locations are from two different images that are assumed uncorrelated, as is 

typical, 𝐶_𝑓𝑢𝑙𝑙 is a block diagonal matrix, i.e., has a zero 2 × 2 cross-covariance block.  This supports a 

MIG stereo solution, and not detailed in the appendix. 

Note: See Equation D.2.1-1 in Appendix D for a generalization of Equation (C.4-1) if the applicable spdcf is 

different for each coordinate, i.e., is an anisotropic spdcf. 

Equation (C.4-1) supports a MIG (mono) solution for two ground locations assuming an external elevation 

source.  This is done by generalizing image errors to “total” image errors or “image measurement” errors, 

which include mensuration errors and sensor-mensuration errors when applicable.  The mensuration 

errors correspond to errors in the user/application’s measurement of image locations corresponding to 

ground locations of features of interest “seen” in the image.    

Correspondingly:           (C.4-2) 

(1) 𝐶_𝑚𝑒𝑎𝑠 = 𝐶 + 𝐶𝑠𝑚 + 𝐶_𝑚𝑒𝑛𝑠, a 2 × 2 error covariance matrix, and if sensor-mensuration errors are 

not modeled, 𝐶𝑠𝑚 = 02×2.  All error covariance matrices are in units of pixels-squared.   

(2) 𝐶_𝑚𝑒𝑎𝑠_𝑓𝑢𝑙𝑙 = [
𝐶_𝑚𝑒𝑎𝑠 (𝜌(∆𝑚1 2)𝐶 + 𝜌_𝑠𝑚(∆𝑚1 2)𝐶𝑠𝑚)

. 𝐶_𝑚𝑒𝑎𝑠
], a 4 × 4 full error covariance matrix. 

(3) Perform the MIG solution for the two ground point locations in the image using their two image 

locations, 𝐶_𝑚𝑒𝑎𝑠_𝑓𝑢𝑙𝑙, and the reference elevation – see TGD 1 and TGD 2d for details regarding a MIG 

(mono) solution – resulting in:  

�̂� with corresponding 4 × 4 a posteriori error covariance matrix 𝐶𝑋_𝑓𝑢𝑙𝑙 in meters-squared, 

assuming that only horizontal coordinates are solved for and easily generalized to 3d ground coordinates. 

 

The 4 × 4 a posteriori error covariance matrix 𝐶𝑋 can be represented as follows for the two horizontal 

geolocations from the MIG solution:  

𝐶𝑋_𝑓𝑢𝑙𝑙 = [
𝐶𝑋 11 𝐶𝑋 12

. 𝐶𝑋 22
].         (C.4-3) 
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This is used to compute the corresponding 2 × 2 covariance matrix 𝑟𝑒𝑙_𝐶𝑋 for relative error between the 

two horizontal locations as follow: 

𝑟𝑒𝑙_𝐶𝑋 = 𝐶𝑋 11 + 𝐶𝑋 22 − 2𝐶𝑋 12 , in meters-squared.      (C.4-4)  

And given the above 𝑟𝑒𝑙_𝐶𝑋, the corresponding scalar accuracy metric rel_CEXX (meters) can be computed 

for any desired level of probability XX assuming a Gaussian distribution of errors. 

 

Note: the above 𝐶𝑋_𝑓𝑢𝑙𝑙 can also be approximated as 𝐶𝑋_𝑓𝑢𝑙𝑙 = 𝐹(𝐶_𝑚𝑒𝑎𝑠_𝑓𝑢𝑙𝑙)𝐹𝑇, where 

 𝐹 = [
𝜕(𝑥, 𝑦)/(𝑙, 𝑠) 02𝑥2

02𝑥2 𝜕(𝑥, 𝑦)/(𝑙, 𝑠)
] and 𝜕(𝑥, 𝑦)/(𝑙, 𝑠) are the 2 × 2 numerical partial derivatives of 

horizontal ground location with respect to image location applicable at a nominal location in the image 

and computed using the image-to-ground function (typically the iterative inverse of the ground-to-image 

function) at the reference elevation. 

Appendix D that follows describes a different type of application of the populated predicted accuracy 

model: its use in the adjustment of the image for a corresponding reduction in its errors.  When 

performed, the processing described above modified accordingly will yield more accurate results. 

 

 Adjustment of Geolocation Data 

A populated Geolocation Data Predicted Accuracy Model also supports an adjustment or correction of the 

corresponding data.  An example of such a populated predicted accuracy model was detailed in Appendix 

C for an image.   

This appendix (Appendix D) describes a corresponding adjustment model and related processing assuming 

the availability of control information.  In particular, it provides further details regarding the WLS solution 

for a correction grid that was initially described in Section 5.3.3.1 in the main body of this document.  It 

also provides further insight regarding image errors such that corresponding predictive statistics 

represent the summed effects of underlying errors, such as error in the ground-to-image function due to 

sensor pose (sensor position and attitude) errors.  This appendix also presents a simulation-based 

assessment of correction grid performance. 

Roadmap 

D.1 Background information 

D.2 The correction grid, its solution, and subsequent adjustment of the image 

D.2.1 Detailed definitions and their related processing 

D.2.2 WLS solution 

D.2.3 Correction of an arbitrary measurement or location in the image 

D.2.4 Summary: Why a correction grid? 
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D.3 Correction grid performance and comparison to an affine-transformation based correction 

 D.3.1 Simulation based performance 

 

D.1 Background information 

Prior to detailing the correction grid for a corresponding image, the solution for its content, and its 

applications, further background information is presented that complements Figure 5.3.3.1-1 of Section 

5.3.3.1 (Adjustment) in the main body of this document.  In particular, Figure D.1-1 below illustrates true 

sensor pose versus sensor pose assumed and contained (represented) in the image metadata and their 

effects on computed geolocations.  The blue dot in the figure represents an arbitrary image location 𝑚 =

(𝑙𝑖𝑛𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒) that is observed/measured in the image, and the red dot represents its corrected image 

location.  Recall that this approach to image adjustment does not correct for the metadata per se, but for 

its effects in image-space. 

The image-to-ground function and its inverse are also represented by green and gold arrows in the figure, 

corresponding to both the assumed sensor pose (metadata with the image) and the true (unknown) 

sensor pose, respectively.  The colors for the arrows were selected arbitrarily. 

Note: there are two image planes illustrated in the Figure D.1-1 (blue and black line segments), which are 

physically one in the same but are indicated separately per associated sensor/image pose.  The two blue 

dots in the figure are at the same measured image location or (𝑙𝑖𝑛𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒) values. 
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Figure D.1-1: Background information regarding true vs. assumed sensor pose (metadata): an arbitrary 

image measurement 𝑚 (blue dot), its error (red arrow) due to errors in the assumed sensor pose, its 

correction (minus the error), and the corrected measurement �̂� (red dot); figure is a 2d rendering of 3d 

space for convenience/clarity 

The correction grid detailed below represents the desired correction in the figure, and is solved for using 

observed/measured locations in the image relative to external control information. 

D.2 The correction grid, its solution, and subsequent adjustment of the image 

A correction grid is presented in Figure D.2-1 and corresponds to a specific  3 × 3 correction grid for clarity 

and ease of example.  Once computed, it is used to correct an arbitrary location or measurement 𝑚 in the 

image (blue circle) for the effects of image metadata errors.  The corrected measurement �̂� is indicated 

by the red circle in the figure.  The blue and red circles are analogous to those presented earlier in Figure 

D.1-1. 
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Figure D.2-1:  An example of a 3 × 3 correction grid and its application for an arbitrary measurement or 

location  𝑚 = (𝑙𝑖𝑛𝑒, 𝑠𝑎𝑚𝑝𝑙𝑒) in the image 

The following goes on to describe the recommended process for computation of the correction grid using 

external control information.  The subsequent application of the correction grid is then described.   

D.2.1 Detailed definitions and their related processing 

This section of the appendix presents necessary definitions and related processing require to compute the 

correction grid and then apply it to arbitrary locations in the image. 

Initial definitions and a priori statistics for the correction grid for solution: 

Correction vector for solution: 𝛿𝑋 = [𝛿𝑋1
𝑇 . . 𝛿𝑋9

𝑇]𝑇, where each 2 × 1 element 𝛿𝑋𝑗  corresponds to an 

(underlying) image location 𝑚𝑗 in the image (gray circles in Figure D.2.1-1).    The a priori statistics for 𝛿𝑋 

are equivalent to the key statistics in the populated predicted accuracy model for the image that were 

detailed in Appendix C.  Their correspondence is as detailed below: 

The a priori value of 𝛿𝑋 is equal to zero, i.e., 𝛿𝑋 = 02(9)×1 = 018×1.  Its corresponding a priori error 

covariance matrix is an 18 × 18 matrix and is equal to: 

𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖 = 𝐸{𝛿𝑋𝛿𝑋𝑇} = 

𝐶 𝜌(∆𝑚1 2)𝐶

𝜌(∆𝑚2 1)𝐶 𝐶

. . 𝜌(∆𝑚1 9)𝐶

𝜌(∆𝑚2 3)𝐶 . .
. . . .

𝜌(∆𝑚9 1)𝐶 𝜌(∆𝑚9 2)𝐶                   
. . . .
… 𝐶

,                   (D.2.1-1) 
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which also corresponds to Equation (C.5-1) extended to multiple image locations and with a slight change 

in notation, i.e., 𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖 ≡ 𝐶_𝑓𝑢𝑙𝑙. 

If the spdcf 𝜌(∆𝑚𝑖 𝑗) is not common to errors in both the line and sample coordinates, simply replace it 

with two spdcf 𝜌_𝑙(∆𝑚𝑖 𝑗) and 𝜌_𝑠(∆𝑚𝑖 𝑗) and replace the term 𝜌(∆𝑚𝑖 𝑗)𝐶 in 𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖 with 𝑆𝐶 ≡

[
𝜌_𝑙(∆𝑙𝑖 𝑗, ∆𝑠𝑖 𝑗) 0

0 𝜌_𝑠(∆𝑙𝑖 𝑗 , ∆𝑠𝑖 𝑗)
] 𝐶, since 𝐶 is a diagonal matrix in this example; otherwise, replace the 

term with  𝐶1/2𝑆𝐶1/2, where superscript ½ represents matrix principal square root and the superscript 𝑇 

represents matrix transpose. 

Measurements: 

Assume that there are 𝑝 2 × 1 measurements 𝑚𝑙
∗, 𝑙 = 1, . . , 𝑝, in the image that correspond to 𝑝 ground 

control points that are available and in the image AOI or footprint:     

Equation/Processing                    (D.2.1-2) 

 Given a ground control point with a priori ground location 𝑋_𝑐𝑛𝑡𝑟𝑙 and accompanying description 

  𝑋_𝑐𝑛𝑡𝑟𝑙 → 𝑚_𝑐𝑛𝑡𝑟𝑙𝑙 in the image for adjustment using its ground-to-image function 

o red square in Figure D.2.1-1 below 

 𝑚𝑙
∗ corresponds to the ground control point identified/measured in the image for adjustment 

o blue square in Figure D.2.1-1 below 

This is represented graphically in Figure D.2.1-1, essentially a repeat of Figure D.2-1 but with information 

only directly applicable to a ground control point and its measurement used in the solution for the 

correction grid.  In this relatively simple figure, the blue square represents 𝑚𝑙
∗ and the red square 

represents 𝑚_𝑐𝑛𝑡𝑟𝑙𝑙.  The a priori ground control point location is represented as X_cntrl in the figure.    

Note: an explicit control image can be used instead of ground control points for external control of the 

image as detailed later. 
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Figure D.2.1-1: Measurement 𝑚𝑙
∗of a ground control point in the image and related quantities 

For further perspective, 𝑚𝑙
∗ and 𝑚_𝑐𝑛𝑡𝑟𝑙𝑙 are also illustrated in the correction grid in Figure D.2.1-2.  Note 

that both Figures D.2.1-1 and D.2.1-2 correspond to the same image, but the former relative to a 1d or 

“side” perspective and the latter relative to a 2d or “top-down” perspective. 
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Figure D.2.1-2: Measurement 𝑚𝑙
∗ of a ground control point in the image and related quantities as 

illustrated relative to the correction grid for solution 

The dashed blue lines in Figure D.2.1-2 represent the flow of information from the measurement 𝑚𝑙
∗, in 

conjunction with 𝑚_𝑐𝑛𝑡𝑟𝑙𝑙, into the solution for the elements (𝛿𝑋𝑖) of the correction grid.  In addition, 

even though only the closest elements of the correction grid are “pointed to” in the figure, information 

actually flows into all of the elements due to the spatial correlation (spdcf) specified in their a priori 

statistics.  The correction element 𝛿𝑋𝑙
∗ is not an explicit member of the correction grid but is an optional 

and explicit member of the correction vector 𝛿𝑋 for solution, as detailed later. 

 

Detailed definitions associated with the measurements and their errors: 

Referring to Equation/Processing D.2.1-2 and to Figure D.2.1-2, and with “𝜖” representing a designated 

type of error: 

𝑚_𝑐𝑛𝑡𝑟𝑙𝑙 = 𝑚_𝑡𝑟𝑢𝑒𝑙 + 𝜖_𝑠𝑦𝑠_𝑐𝑛𝑡𝑟𝑙𝑙, the red square in the figure, 

where 𝑚_𝑡𝑟𝑢𝑒𝑙 is the “true” image location of the ground control point based on the ground-to-image 

function using the current metadata or (incorrect) sensor pose.  𝑚_𝑐𝑛𝑡𝑟𝑙𝑙 is equal to 𝑚_𝑡𝑟𝑢𝑒𝑙 plus the 

systematic error 𝜖_𝑠𝑦𝑠_𝑐𝑛𝑡𝑟𝑙𝑙 associated with errors in the a priori location X_cntrl of the ground control 

point projected to image-space. 
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𝑚𝑙
∗ = 𝑚_𝑡𝑟𝑢𝑒𝑙 − 𝛿𝑋𝑙

∗ + 𝜖_𝑚𝑒𝑛𝑠𝑙
∗, the blue square in the figure, 

where 𝑚𝑙
∗ is the actual measured location of the ground control point in the image.  𝛿𝑋𝑙

∗ is the desired 

correction in image-space and 𝜖_𝑚𝑒𝑛𝑠𝑙
∗ is the mensuration error associated with the 

identification/measurement of the ground control point in the image. 

∆𝑚𝑙 ≡ 𝑚_𝑐𝑛𝑡𝑟𝑙𝑙 − 𝑚𝑙
∗ = 𝛿𝑋𝑙

∗ + 𝜖_𝑠𝑦𝑠_𝑐𝑛𝑡𝑟𝑙𝑙 − 𝜖_𝑚𝑒𝑛𝑠𝑙
∗ , or 

∆𝑚𝑙 ≡ 𝛿𝑋𝑙
∗ + 𝜖_𝑚𝑒𝑎𝑠_∆𝑚𝑙. 

In the above: 

 The actual systematic error to be removed via solution for the correction grid and its subsequent 

application corresponds to the correction 𝛿𝑋𝑙
∗ per Figure D.2.1-2 (correction grid) 

 𝜖_𝑚𝑒𝑛𝑠𝑙
∗ is defined as the random mensuration error due the identification/measurement of the 

ground control point in the image for adjustment and is assumed to be uncorrelated with 

measurements corresponding to other ground control points, e.g.,  𝜖_𝑚𝑒𝑛𝑠𝑙1
∗  and 𝜖_𝑚𝑒𝑛𝑠𝑙2

∗ , 𝑙1 ≠

𝑙2, are uncorrelated.  Correspondingly, a block diagonal 2𝑚 × 2𝑚 error covariance matrix is 

applicable for the measurements of 𝑝 ground control points in the image, and is typically a 

diagonal matrix. 

 𝜖_𝑠𝑦𝑠_𝑐𝑛𝑡𝑟𝑙𝑙 is the systematic error in image-space due to errors in the ground control point 

location that was provided; in general, it is spatially correlated in image-space with the systematic 

errors associated with other ground control points and a full 2𝑝 × 2𝑝 error covariance matrix in 

image-space is applicable for 𝑝 ground control points.  This error covariance matrix is generated 

by the propagation of a full ground location error covariance matrix to image-space, performed 

by the latter’s pre and post multiplication by a block diagonal 2𝑝 × 3𝑝 partial derivative matrix 

(𝜕(𝑙, 𝑠)/𝜕(𝑥, 𝑦, 𝑧)) and its transpose, respectively.  This partial derivative matrix is applicable to 

all ground control points and typically generated numerically using the ground-to-image function 

for the image at the appropriate operating points or a priori ground control point locations 

associated with linearization of the problem. 

 ∆𝑚𝑙 is the difference between 𝑚_𝑐𝑛𝑡𝑟𝑙𝑙 and 𝑚𝑙
∗ and is the actual measurement into the WLS 

solution process.  

 The total measurement error 𝜖_𝑚𝑒𝑎𝑠_∆𝑚𝑙 = 𝜖_𝑠𝑦𝑠_𝑐𝑛𝑡𝑟𝑙𝑙 − 𝜖_𝑚𝑒𝑛𝑠𝑙
∗ 

 

Finally, we have: 

∆𝑀 ≡ [∆𝑚1
𝑇 . . ∆𝑚𝑝

𝑇]
𝑇

 , a 2𝑝 × 1vector, the measurement vector into the WLS solution process. 

Note: If control imagery or its equivalent is used instead of a ground control point, it is assumed to have 

been aligned with (resampled or mapped to) the image coordinate system of the image to be adjusted for 

the purposes of identification of the same object (only).  Also, the above equations change somewhat: 

 ∆𝑚𝑙 ≡ 𝛿𝑋𝑙
∗ + 𝜖_𝑚𝑒𝑎𝑠_∆𝑚𝑙 but is computed as follows: 
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o Identify/measure an arbitrary ground location in the control image (m1) and in the image 

to be adjusted (m2); using the control image’s image measurement (m1) and its image-

to-ground function, compute the corresponding geolocation; using this geolocation and 

the ground-to-image function of the image to be adjusted, compute the conjugate 

geolocation image location (m3); ∆𝑚𝑙 = 𝑚2 − 𝑚3. 

o Also, 𝜖_𝑚𝑒𝑎𝑠_∆𝑚𝑙 has an additional additive mensuration error associated with the 

measurement in the control image, and an additional additive error associated with the 

error in the assumed reference elevation used in the image-to-ground projection. 

Measurement error vector and predictive statistics: 

The measurement error vector corresponding to ∆𝑀 is defined as: 

𝜖_𝑚𝑒𝑎𝑠_∆𝑀 ≡ [𝜖_𝑚𝑒𝑎𝑠_∆𝑚1
𝑇 . . 𝜖_𝑚𝑒𝑎𝑠_∆𝑚𝑝

𝑇]
𝑇

 , a 2𝑝 × 1vector, with an assumed a priori mean-

value equal to zero and an a priori error covariance matrix equal to:  

𝐶_𝑚𝑒𝑎𝑠_∆𝑀 = 𝐶_𝑚𝑒𝑛𝑠_∆𝑀 + 𝐶_𝑠𝑦𝑠_𝑐𝑛𝑡𝑟𝑙, a 2𝑝 × 2𝑝 matrix, where: 

 𝐶_𝑚𝑒𝑛𝑠_∆𝑀 is a 2𝑝 × 2𝑝 diagonal matrix assumed to have common block diagonals (although 

this can be generalized, if applicable) 

 𝐶_𝑠𝑦𝑠_𝑐𝑛𝑡𝑟𝑙 is a 2𝑝 × 2𝑝 matrix that is generally full, i.e., contains cross-covariance blocks due to 

spatial correlation 

 Unlike, Equation (C.4-2) in Appendix C describing applications of a populated accuracy model for 

an image, 𝐶_𝑚𝑒𝑎𝑠_∆𝑀 does not include the equivalent of predictive statistics for a priori errors 

in the image since these are for solution via 𝛿𝑋. 

Partial derivatives: 

Define the partial derivative of the measurement vector with respect to the state vector (adjustment or 

correction vector 𝛿𝑋) for solution as follows for the example described earlier, i.e. a 3 × 3 correction grid 

with 𝑝 conjugate measurements corresponding to ground control points: 

𝐵 ≡ 𝜕(∆𝑀)/𝜕(𝛿𝑋) =

[
 
 
 
 
𝐵1

. .
𝐵𝑙. .
𝐵𝑝]

 
 
 
 

, where 𝐵𝑙  is a 2 × 2(9) matrix associated with component 𝑙 of the 

measurement vector ∆𝑀𝑙 = ∆𝑚𝑙.   

𝐵𝑙  is defined as follows based on the image location 𝑚𝑙
∗ that corresponds to the blue square in Figure 

B.2.2.2-2, and more specifically, to the blue square in Figure D.2.1-2 and its corresponding correction for 

solution 𝛿𝑋𝑙
∗.  However, in this solution approach, 𝛿𝑋𝑙

∗ is not in the adjustment vector and is approximated 

by the four adjustment elements {𝛿𝑋1, 𝛿𝑋2, 𝛿𝑋4, and 𝛿𝑋5} in the correction grid cell that are defined as 

follows: 
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Let 𝑎1 - 𝑎4 represent the adjustment elements’ corresponding scalar bilinear interpolation coefficients, 

respectively, computed based on the 2d distances between 𝑚𝑗
∗ and 𝑚1, 𝑚2, 𝑚4, and  𝑚5, respectively.   

Define 𝐴𝑘 = 𝑎𝑘𝐼2×2, for 𝑘 = 1, . . ,4.  (Note: the 𝑎𝑘 are non-negative and sum to 1.)   

Therefore: 

 𝛿𝑋𝑙
∗ ≅ 𝐴1𝛿𝑋1 + 𝐴2𝛿𝑋2 + 𝐴3𝛿𝑋4 + 𝐴4𝛿𝑋5, and the  

corresponding entry in the 𝐵 matrix is equal to: 

𝐵𝑙 = [𝐴1 𝐴2 02×2 𝐴3 𝐴4 02×2 02×2 02×2 02×2]. 

D.2.2 WLS solution 

Define the measurement weight matrix as 𝑊 = (𝐶_𝑚𝑒𝑎𝑠_∆𝑀)−1, a 2𝑝 × 2𝑝 matrix. 

The WLS solution for the correction vector is as follows: 

𝛿�̂� = (𝐶_𝛿�̂�) 𝐵𝑇𝑊∆𝑀,  

where the a posteriori solution error covariance matrix is equal to: 

𝐶_𝛿�̂� = (𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖−1 + 𝐵𝑇𝑊𝐵)−1. 

Note that in the solution process, the measurement ∆𝑀𝑙 updates 𝛿𝑋1, 𝛿𝑋2, 𝛿𝑋4, and 𝛿𝑋5 directly (dashed 

blue lines in Figure D.2.1-2), but in addition also updates all of the other adjustment elements indirectly 

via the spatial correlation contained in the adjustment vector’s a priori covariance matrix  𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖. 

Note that ∆𝑀 can also be considered equal to the a priori measurement residual vector, i.e.,  ∆𝑀 →

∆𝑀 + ∆𝑀0, where ∆𝑀0 is the a priori (pre-solution) prediction of the value of ∆𝑀 and is equal to zero.  

The a priori measurement residual is not to be confused with the a posteriori (post solution) 

measurement residual, typically analyzed to help ensure a valid WLS solution.   

It is recommended that the WLS solution includes processing for quality control of the solution, such as 

measurement editing and examination of the a posteriori (post-solution) measurement residuals 

normalized by their predicted accuracy.  If these residuals are outside their expected range, modify the 

solution vector’s a priori error covariance matrix  𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖 accordingly and re-perform the WLS 

solution as needed.  General “rules of thumb” for the modification of 𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖  are as follows 

regarding the parameters used to compute it: 

 If the normalized residuals are too large, increase the correction vector’s a priori error 

covariance matrix by a positive scale factor greater than 1 and/or reduce the a priori spatial 

correlation via modification of the spdcf, e.g., decrease the distance constant(s) if a CSM four 

parameter spdcf. 
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 If the normalized residuals are too small, reduce the correction vector’s a priori error 

covariance matrix by a positive scale factor less than 1 and/or increase the a priori spatial 

correlation via modification of the spdcf, e.g., increase the distance constant(s) if a CSM four 

parameter spdcf 

As mentioned above, the above are only general rules of thumb and involve the modification of 

𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖 only, which are assumed the most likely a priori predictive statistics requiring 

modification.  However, the a priori measurement error covariance matrix 𝐶_𝑚𝑒𝑎𝑠_∆𝑀 may also need 

modifications (scaled up or down). 

See TGD 2d (Estimators and their Quality Control) for further details regarding a WLS solution in general 

and methods for its quality control. 

An optimal solution:  

The above solution process is near optimal, but not theoretically optimal, due to the use of interpolation 

associated with the conjugate measurements.  An optimal solution process (assuming correct a priori 

modeling) is recommend as a simple extension to the above solution process that does not require the 

interpolation.  It is the baseline method and is defined as follows: 

Augment the state (correction) vector for solution with 2 × 1 corrections that are explicitly associated 

with the conjugate measurements (locations) in the image for correction, i.e., 𝛿𝑋𝑙
∗ associated with 𝑚𝑙

∗ , 

𝑙 = 1, . . , 𝑝 (see Figure B.2.2-4): 

𝛿𝑋 ≡ [𝛿𝑋1
𝑇 . . 𝛿𝑋9

𝑇 𝛿𝑋1
∗𝑇 . . 𝛿𝑋𝑝

∗𝑇]
𝑇

, a (18 + 2𝑝) × 1 vector. 

Augment the a priori covariance matrix as well: 𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖, a (18 + 2𝑝) × (18 + 2𝑝) matrix. 

The same method that was originally used to compute the a priori covariance matrix in the first place is 

used to augment it in order to reflect the augmented correction vector for solution.  That is, 𝐶 and 

𝜌(∆𝑚𝑖 𝑗) are still applicable, but are also applied to the augmented elements in 𝛿𝑋 and for the 

evaluation of the spdcf at all image location differences ∆𝑚𝑖 𝑗, i.e., applicable to all pairs of the 

underlying locations in the original elements 𝛿𝑋𝑗, 𝑗 = 1, . . ,9 , the augmented elements 𝛿𝑋𝑙
∗, 𝑙 = 1, . . , 𝑝, 

and between these two sets of locations. 

Redefine the partial derivative matrix 𝐵 as follows: 

𝐵 = [02𝑝×18 𝐼2𝑝×2𝑝]. 

The remaining steps in the solution are identical to those for the first solution, yielding an (18 + 2𝑝) × 1 

a posteriori solution 𝛿�̂� and a  (18 + 2𝑝) × (18 + 2𝑝) a posteriori solution error covariance matrix 

𝐶_𝛿�̂�. 
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This optimal solution method updates the new elements in the augmented correction vector directly via 

the measurements, whereas the original elements are now updated via their spatial correlation with the 

new elements as specified in the corresponding cross-covariance block in the augmented 𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖. 

Note: in general, the predicted accuracies for grid corrections in the optimal solution method are slightly 

larger (worse) than their counterparts in the standard solution, the latter using bilinear interpolation to 

relate the measurements to the grid corrections instead of a priori spatial correlation exclusively.  This 

effect becomes even more pronounced if the a priori spatial correlation is less than 0.9 per adjacent grid 

point.  However, the standard solution’s predicted accuracy is only theoretically valid (consistent with 

actual solution errors) if local grid errors are indeed bilinearly related to the measurements, which is 

only an approximation in general for errors corresponding to a random field, i.e., corresponding to the a 

priori predictive statistics for image errors.   

The augmented elements in the optimal solution can be removed from 𝛿�̂� and their corresponding 

covariance block and cross-block from 𝐶_𝛿�̂� if so desired, making the subsequent processing for the 

correction of an arbitrary image measurement (location) in the corrected image identical for both 

solution methods, and defined as follows: 

D.2.3 Correction of an arbitrary measurement or location in the image 

For an arbitrary image location (measurement) 𝑚 in the image (see blue circle in Figure D.2-1), compute 

its correction as the bilinear interpolation of the four elements in 𝛿�̂� that correspond to the correction 

cell in which it resides, i.e., 𝛿�̂�5, , 𝛿�̂�6, 𝛿�̂�8, and 𝛿�̂�9 for the example in Figure D.2.1-2.  The correction is 

added to the image location to yield a corrected location �̂� (red circle): 

�̂� = 𝑚 + 𝐴1𝛿�̂�5 + 𝐴2𝛿�̂�6 + 𝐴3𝛿�̂�8 + 𝐴4𝛿�̂�9, where 

𝑎𝑘, 𝑘 = 1, . . ,4, are the scalar non-negative bilinear coefficients that sum to 1 and 𝐴𝑘 = 𝑎𝑘𝐼2×2. 

The 2 × 2 error covariance matrix for  �̂� is defined as the bilinear interpolation of the 2 × 2 diagonal 

blocks in 𝐶_𝛿�̂� corresponding to 𝛿�̂�5, , 𝛿�̂�6, 𝛿�̂�8, and 𝛿�̂�9, respectively, and that also corresponds to a 

mean-value of error equal to zero (02×1).  The same bilinear coefficients used for the computation of �̂� 

are applicable.  

Such a correction and its predicted accuracy are approximate due to the interpolation, but are 

reasonable.  Furthermore, they are virtually optimal if the a priori spatial correlation between adjacent 

corrections in the correction grid is high, approximately 0.9 or higher.   

A theoretically optimal correction for an arbitrary location in the image would require an additional 

augmented correction 𝛿𝑋𝑘
∗∗, for each location 𝑚𝑘 in the image of interest, similar to the augmented 

corrections 𝛿𝑋𝑙
∗ associated with the optimal solution for the correction vector that were defined earlier.  

Optimality is defined as the smallest solution errors possible (minimization of the WLS cost function), 

given the set of available control image measurements, and that includes reliable predicted accuracy. 

D.2.4 Summary: Why a correction grid? 
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A correction grid with associated a priori statistics was selected to represent the adjustment of an image 

for the effects of incorrect image metadata.  The image is assumed to correspond to Commodities data 

with little or no accuracy pedigree available at the time of image/metadata generation and subsequent 

(initial) dissemination.  Correspondingly, the a priori statistics used in the solution for the correction grid 

are generated per the techniques detailed in Appendix C, and essentially represent the “average” (root-

mean-square) effect of underlying sensor pose errors on image location errors across an image.  The a 

priori statistics are populated based on sample statistics corresponding to multiple realizations of the type 

or class of images of interest.  The summed effects of other less-dominant underlying sources of error are 

included and represented as well.  In summary, the a priori statistics represent image location errors for 

an arbitrary image from the type or class of images of interest. 

The correction grid approach is very general and can account for the summed effects of “deterministic” 

sensor pose errors, “random” sensor pose/image formation errors (e.g., sensor-mensuration error), and 

the effects of residual errors associated with possible multiple control procedures applied to the 

image/metadata by the generator/provider prior to its dissemination to the user community.  For an 

arbitrary, but specific image, these summed effects will typically vary across the image in a systematic 

manner consistent with spatial correlation – hence, the solution for a grid of corrections across the image. 

“Deterministic” sensor pose errors were illustrated in Figures D.1-2 and D.2.1-2 and are essentially the 

difference between “assumed” and “true” sensor/image pose, where sensor/image pose includes sensor 

location, attitude, and focal length.  Both sets of poses, and therefore the errors in the assumed pose, are 

deterministic for a given or specific image, and their equivalent effects on image locations in the image 

are similar for adjacent or near-by locations in the image.  However, sensor pose errors and their 

equivalent effects on image location errors vary from image to image.   

Correspondingly, and with respect to the predictive statistics which are applicable to image location errors 

in an arbitrary image from the type or class of images of interest, errors are considered random.  More 

specifically, they are uncorrelated from image to image and spatially correlated as a function of image-

location distance within the same image.  This is also true for the practical representation of the summed 

effects of all error sources listed in the paragraphs above. 

The spatial correlation of image location error is represented by an (intra-image) spdcf.  The greater the 

corresponding spatial correlation, the less density required in terms of the number of grid points in the 

correction grid.  The a priori spatial correlation and other a priori statistics for the image are contained in 

a populated Geolocation Data Predicted Accuracy Model: Image-space, and are typically tuned based on 

accuracy assessments (sample statistics of actual errors) corresponding to images from the same type or 

class of image. 

Examples: 

Examples of the correction grid based on simulated data are presented in Section D.3 below including 

comparisons to corrections based on affine transformations.  The latter can better model 
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“deterministic” sensor pose errors than can a correction grid, but cannot effectively model any of the 

other sources of error discussed in the paragraphs above. 

D.3 Correction grid performance and comparison to an affine-transformation 

based correction  

Section D.2 detailed the generation and use of a correction grid for an image.  This section of the appendix 

details corresponding performance results that were initially discussed in Section 5.3.3.1.  An alternate 

affine transformation-based correction and its performance are also detailed in this appendix that were 

initially discussed in Section 5.3.3.1 as well.  The affine-transformation-based correction can yield better 

results than a correction grid if errors are known to be consistent with such a transformation, which is not 

true in general for a Commodities data image. 

Correction grid 

The correction grid is used to adjust or correct the image locations of all pixels in an image.  It is solved via 

a WLS solution using conjugate control image measurements or their equivalent.  The a priori statistics 

for the correction grid (errors) used in the WLS solution correspond to the predictive statistics contained 

in the Predicted Accuracy Model: Measurement space, as discussed in Section 5.3.3.1 and as detailed in 

Section D.2.  In particular, the predictive statistics correspond to errors represented as a random field.   

The correction grid is the recommended or “baseline” correction or adjustment method for a 

Commodities data image.  It includes the optimal WLS solution variant that includes an augmented state 

vector as detailed in Section D.2. 

Affine-transformation 

An affine transformation is an invertible transformation 𝑦 = 𝑀𝑥 + 𝑡 that transforms a vector 𝑥 into a 

vector 𝑦, and can represent a combination of translation, rotation, skew, and two scale factors (see 

chapter A.4 of reference [15]).  Note that for the 2d example discussed in this section, the affine 

transformation has no skew and only a single scale factor and as such, is also a conformal transformation.  

The ground-to-image function for the image may be represented by a ground-to-image polynomial.  The 

image-to-corrected image transformation is represented by the affine transformation.  The corrections 

correspond to errors in the underlying ground-to-image function. 

A representative image-to-corrected image affine transformation is as follows using capital 𝑋 for the 2d 

(original) image location and (𝑋 + ∆𝑋) for its corrected value: 

𝑋 + ∆𝑋 = (1 + 𝑠) [
1 𝛼

−𝛼 1
]𝑋 + 𝑋0,  

where 𝛼 represents a small angle rotation about the center of the image, 𝑠 a scale factor correction, and 

𝑋0 a 2d offset correction.   

Therefore, the correction itself (not necessarily affine) is represented as: 
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∆𝑋 ≅ [
𝑠 𝛼

−𝛼 𝑠
]𝑋 + 𝑋0,  

with a corresponding partial derivative matrix used in a WLS solution for the state parameters 

[𝑠 𝛼 𝑥0 𝑦0]𝑇 equal to: 

𝜕∆𝑀

𝜕𝑠𝑡𝑎𝑡𝑒
= [

𝑥 𝑦 1 0
𝑦 −𝑥 0 1

], where 𝑠𝑡𝑎𝑡𝑒 ≡ [𝑠 𝛼 𝑥0 𝑦0]𝑇 and ∆𝑀 is the difference between 

conjugate image measurements, one in the “control image” and one in the product image.  Note that the 

image coordinate system (𝑥, 𝑦) has an origin at the center of the image, but that previous plots in this 

document show the origin at the corner of the image since that is the convention used when illustrating 

image coordinates in terms of rows and columns. 

Note: an affine-based correction model containing only parameter state elements 𝑥0 and 𝑦0 is equivalent 

to a RPC polynomial correction model for two polynomial offset coefficients.  In addition, both are 

equivalent to a correction grid adjustment model if the latter’s a priori spatial correlation of image location 

errors is specified as very high (≥≈ 0.98) across the image. 

D.3.1 Simulation results 

A simulation was performed that generates image errors and then solves for their corrections via a WLS 

solution using conjugate image measurements.  Both the above correction grid and affine solution 

approach were implemented, i.e., their corresponding corrections and state parameters were solved for 

via WLS. 

D.3.1.1 Definitions and a priori values 

Errors were simulated consistent with either the (a priori) predictive statistics in the Geolocation Data 

Predicted Accuracy Model: Image-space or the (a priori) predictive statistics of an Affine-based error 

model, termed “Pred Acc” and “Affine”, respectively, for convenience. 

“Pred Acc” corresponds to a 2𝑥2 error covariance matrix for image-location errors and an spdcf that 

specifies their spatial correlation across image-space.  The spdcf was assumed a scalar isotropic function 

applicable to both x (image line) and y (image sample) errors across the image as a function of horizontal 

image-space distance between image locations. 

“Affine” corresponds to the standard deviation (sigma) of each of the four elements in the state vector 

[𝑠 𝛼 𝑥0 𝑦0]𝑇, with each of their corresponding errors assumed uncorrelated with the others.  A  4 ×

4 covariance matrix with the above standard deviations-squared down the diagonal is equivalent.  Note 

that both the “Affine” as well as the “Pred Acc” errors are reasonably assumed to have mean-values equal 

to zero and to be Gaussian distributed. 

Errors were corrected based on two different WLS solutions: (1) one for a correction grid and termed “cor 

grid” with a priori uncertainty assumed consistent with the above ”Pred Acc” error model, and (2) one for 

the affine parameter 𝑠𝑡𝑎𝑡𝑒 ≡ [𝑠 𝛼 𝑥0 𝑦0]𝑇 and termed “affine” with a priori uncertainty assumed 

consistent with the above “Affine” error model. 
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The actual predictive statistics for the two error models are specifiable in the pseudo-code (presented 

later in this appendix), and are equal to the following: 

“Pred Acc”: 

𝑐𝑜𝑣 = [
𝑠𝑖𝑔𝑚𝑎2 0

0 𝑠𝑖𝑔𝑚𝑎2] = [202 0
0 202] pixels-squared,  

and spdcf represented as a CSM four parameter spdcf, with corresponding parameters equal to 

𝐴 = 1 (unit-less), 𝛼 = 𝛽 = 0, and 𝐷 = 10 or 20 grid units,  

where a grid unit is on-fifth the width (distance) of the image in this simulation.  A grid unit is also equal 

to the distance between adjacent corrections in the 6 × 6 correction grid also assumed applicable to the 

“cor grid” solution.  Therefore, if the image is 25k x 25k pixels, a grid unit is equal to 5k pixels. 

Note that the correlation of errors between two image locations is equal to 𝜌(𝑑𝑖𝑠𝑡) = 𝐴𝑒−𝑑𝑖𝑠𝑡/𝐷, where 

𝑑𝑖𝑠𝑡 is the distance between the two geolocations in grid units.  Thus, if distance is equal to the distance 

between two adjacent corrections in the correction grid and 𝐷 = 10, 𝜌(𝑑𝑖𝑠𝑡) = (1.0)𝑒−0.1 ≅ 0.90.  If 

𝐷 = 20, 𝜌(𝑑𝑖𝑠𝑡) = (1.0)𝑒−0.05 ≅ 0.95.   

Also, the value of 𝐴 is sometimes set to a value slightly less than 1, such as 0.98, in order to approximate 

the contributions of “sensor-mensuration” error, if applicable, and/or to put a lower limit on pre and post-

solution relative accuracy (sigma) between two image locations that are very close together. 

“Affine”: 

𝑐𝑜𝑣_𝑎𝑓𝑓𝑖𝑛𝑒_𝑠𝑡𝑎𝑡𝑒 = [

42 0
0 62

0 0
0 0

0 0
0 0

122 0
0 122

], with corresponding a priori standard deviations of error for 

the affine state vector parameters 𝑠, 𝛼, 𝑥0, and 𝑦0  equal to 4 pixels/grid unit, 6 pixels/grid unit, 12 pixels, 

and 12 pixels, respectively. 

D.3.1.2 Specific results 

The simulation (image realization) was performed 200 times or “trials” for each applicable combination 

of the above. Errors were generated independently for image-location errors (or affine state errors, as 

applicable) and for conjugate measurement errors for each of the 200 realizations.   

A specified number of measurements was also generated for each realization, with control image errors 

consistent with a standard deviation of 1 pixel for each image coordinate and assumed independent for 

convenience.  The locations of the conjugate measurements in the image were also generated randomly 

for each realization. 
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Results are categorized assuming two different degrees of spatial correlation when actual errors 

correspond to the “Pred Acc” error model: 𝐷 = 10 and 𝐷 = 20.  The latter corresponds to somewhat 

higher spatial correlation or similarity of image location errors across the image, although both are 

reasonable and their applicability dictated by accuracy assessments of different images from the same 

class or type of image of interest.  Also, regardless the actual error model (“Pred Acc” vs “Affine”), the 

“cor grid” solution method (correction grid) assumes the appropriate value for 𝐷.  Note that the sensitivity 

of results to this and other assumption is address in Section D.1.3. 

D.3.1.3 Distance constant specifies relatively high spatial correlation 

Results are presented in Table D.3.1.3-1 for a 6x6 grid of check points that align with the “cor grid” 

solution’s correction grid for convenience, and where “pred sigma” is the corresponding a posteriori 

standard deviation of error (predicted accuracy) based on the corresponding WLS solution.  Results are 

presented in terms of image radial location errors, i.e., the root-sum-square of image x (line) errors with 

image y (sample) errors with units of pixels.  A value of the distance constant 𝐷 = 20 grid units was used 

to simulate (actual) errors if they were specified to be consistent with “Pred Acc” and was also used in the 

WLS “cor grid” solution if applicable. 

Table D.3.1.3-1: Monte-Carlo results regarding image location radial errors and their predicted accuracy 

(sigma); root-mean-square results in pixels over 200 simulated independent realizations per actual error 

model and corresponding to a 6x6 check point grid; 𝐷 = 20 grid units 

 

Note the sensitivity of post-solution errors to the number of randomly located conjugate measurements. 

The following presents examples of specific realizations of the above corresponding to actual errors 

consistent with “Pred Acc” followed by those consistent with “Affine”.  15 conjugate measurements at 

random locations in the image (circles) are applicable for each realization.  As a reminder, the errors 

consistent with “Pred Acc” correspond to a random field.  Pre-adjustment and post-adjustment 2d errors 

are represented by blue and red 2d vectors or quivers, respectively, across a grid of check points in the 

plots that follow. 

 

 

Actual Error # conjugate Pre-soln errors Post- soln errors: Post-soln errors: Post-soln pred Post-soln pred

Model msmnts (pixels) cor grid affine sigma: cor grid sigma: affine

(pixels) (pixels) (pixels) (pixels)

"Pred Acc" 5 27.8 9.3 11.7 9.2 1.2

15 28.4 6.9 10 6.8 0.6

150 28.2 3.9 9.2 3.8 0.2

"Affine" 5 24.8 10.4 1.2 9.2 1.2

15 23.7 4.6 0.6 6.9 0.6

150 24.5 1.4 0.2 3.9 0.2
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Actual Error Model: “Pred Acc” 

In the following, the actual error model used to generate image errors in the realization was “Pred Acc”.   

 

Figure D.3.1.3-1: WLS solution “cor grid” applicable; largest image location radial error equals 30.1 pixels 

 

Figure D.3.1.3-2: WLS solution “affine” applicable; largest image location radial error equals 30.1 pixels; 

same realization of errors and measurements as in Figure D.3.1.3-1 
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Actual Error Model: Affine 

In the following, the actual error model used to generate image errors in the realization was “Affine”. 

 

Figure D.3.1.3-3: WLS solution “cor grid” applicable; largest image location radial error equals 39.9 pixels 

 

Figure D.3.1.3-4: WLS solution “affine” applicable; largest image location radial error equals 39.9 pixels; 

same realization of errors and measurements as in Figure D.3.1.3-3 
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As illustrated in Figure D.3.1.3-4, the “affine” WLS solution performed extremely well when errors were 

consistent with its assumed error model and its predictive statistics. 

As illustrated in Figure D.3.1.3-3, the “cor grid” solution performed reasonably well.  Note that its a priori 

predictive statistics only statistically approximate the “Affine” errors.  In particular, the spdcf 

approximates well the spatial correlation of errors that are within a few distance units apart but does not 

de-correlate all the way to negative values that are possible for errors 5-7 grid units apart, i.e., in opposite 

“quadrants” in the above figures.  This is particular true if “Affine” errors (realizations) correspond to 

large-valued scale and/or rotational errors. 

D.3.1.4 Distance constant specifies lower spatial correlation 

Results are presented in Table D.3.1.4-1 for a 6x6 grid of check points that align with the “cor grid” 

solution’s correction grid for convenience, and where “pred sigma” is the corresponding a posteriori 

standard deviation of error (predicted accuracy) based on the corresponding WLS solution.  Results are 

presented in terms of image radial location errors, i.e., the root-sum-square of image x (line) errors with 

image y (sample) errors with units of pixels.  A value of the distance constant  𝐷 = 10 grid units was used 

to simulate (actual) errors if they were specified to be consistent with “Pred Acc” and also used in the WLS 

“cor grid” solution if applicable.  The reduction of the distance constant 𝐷 from 20 to 10 grid units 

corresponds to a lower degree of spatial correlation. 

Table D.3.1.4-1: Monte-Carlo results regarding image location radial errors and their predicted accuracy 

(sigma); root-mean-square results in pixels over 200 simulated independent realizations per actual error 

model and corresponding to a 6x6 check point grid; 𝐷 = 10 grid units 

 

The following presents examples of specific realizations corresponding to actual errors corresponding to 

“Pred Acc” followed by those corresponding to “Affine”.  Again, 15 conjugate measurements at random 

locations in the image are applicable for each realization and errors are presented across a grid of check 

points. 

 

 

 

Actual Error # conjugate Pre-soln errors Post- soln errors: Post-soln errors: Post-soln pred Post-soln pred

Model msmnts (pixels) cor grid affine sigma: cor grid sigma: affine

(pixels) (pixels) (pixels) (pixels)

"Pred Acc" 5 28.2 13.8 17.5 13.5 1.2

15 28.7 9.9 13.7 9.9 0.6

150 28.2 5.6 13.0 5.6 0.2

"Affine" 5 23.2 9.4 1.2 13.2 1.2

15 24.7 5.1 0.6 10.0 0.6

150 23.2 1.5 0.2 5.6 0.2
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Actual Error Model: “Pred Acc”: 

In the following, the actual error model used to generate image errors in the realization was “Pred Acc”. 

 

Figure D.3.1.4-1: WLS solution “cor grid” applicable; largest image location radial error equals 40.6 pixels 

 

Figure D.3.1.4-2: WLS solution “affine” applicable; largest image location radial error equals 40.6 pixels; 

same realization of errors and measurements as in Figure D.3.1.4-1. 
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Figures D.3.1.4-3 and D.3.1.4-4 present the same scenario as above but for a different realization.  This 

particular realization was very difficult for the “affine” WLS solution to solve for (correct) as seen in Figure 

D.3.1.4-4.  The actual errors were consistent with “Pred Acc” and were in direct “contradiction” in this 

particular realization to the WLS solution’s assumed a priori affine error model. 

 

Figure D.3.1.4-3: WLS solution “cor grid” applicable; largest image location radial error equals 30.8 pixels 

 

Figure D.3.1.4-4: WLS solution “affine” applicable; largest image location radial error equals 30.8 pixels; 

same realization of errors and measurements as in Figure D.3.1.4-3. 
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Actual Error Model: Affine 

In the following, the actual error model used to generate image errors in the realization was “Affine”. 

 

Figure D.3.1.4-5: WLS solution “cor grid” applicable; largest image location radial error equals 62.0 pixels 

 

Figure D.3.1.4-6: WLS solution “affine” applicable; largest image location radial error equals 62.0 pixels; 

same realization of errors and measurements as in Figure D.1.2.2-5. 
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Affine pros and cons regarding solution observability: 

As illustrated in Figure D.3.1.4-6, the “affine” WLS solution performed extremely well when actual errors 

are affine.  This is also applicable to the corresponding Monte-Carlo results present in both Tables 

D.3.1.3.1-1 and D.3.1.4-1.  In particular, relatively few control measurements are needed to get an 

accurate solution.  This is due to “high” solution observability since the actual errors and solution error 

model correspond to deterministic but unknown parameters (e.g., affine state vector parameters 𝑠, 𝛼, 

𝑥0, and 𝑦0), as opposed to non-deterministic or “random” corrections corresponding to the correction 

grid.  This is also true for other deterministic correction models that are more general than the affine four 

parameter model.  However, for Commodities data, these deterministic models are not known to be 

applicable in general, and therefore, the correction grid approach or “cor grid” is more robust. 

D.3.2 Sensitivities of the baseline “cor grid” solution method 

The following presents sensitivities of the “cor grid” solution method to various parameters.  The actual 

error model is “Pred Acc” for all cases. 

Table D.3.2-1 presents solution performance as a function of a priori spatial correlation, with 15 randomly 

located conjugate measurements assumed and the a priori model used in the “cor grid” WLS solution 

modeled consistent with the actual error model “Pred Acc”. 

Table D.3.2-1: Monte-Carlo Results regarding image location radial errors and their predicted accuracy 

(sigma) corresponding to the “cor grid” WLS solution; root-mean-square results in pixels over 200 

simulated independent realizations per the actual error Model “Pred Acc” and a 6x6 check point grid; the 

value of a priori spatial correlation (𝐷) is parameterized, and applicable to both “Pred Acc” and the WLS 

solution “cor grid”. 

 

As seen in Table D.3.2-1, the higher the spatial correlation of errors, the better the solution results.  The 

corresponding degree of spatial correlation is specified by the value of the distance constant 𝐷.  This value 

is assumed to be made available by the Predicted Accuracy Model: Image-space based on sample statistics 

of error from previous accuracy assessments of the same type of class of image.   

Typical values of 𝐷 correspond to 𝐷 = 10 through 𝐷 = 20.  These values are also “tunable” via the size 

of the correction grid specified as part of the “cor grid” solution process, i.e., the above value of 𝐷 is 

Actual Error Spdcf correlation correlation Pre-soln errors Post- soln errors: Post-soln pred

Model distance constant at 1 grid unit at 7 grid units (pixels) cor grid sigma: cor grid

D  (grid units) (pixels) (pixels)

D=5 0.82 0.25 28.2 12.8 13

"Pred Acc" D=10 0.9 0.5 28.7 9.9 9.9

D=20 0.95 0.7 28.0 6.7 6.8

D=40 0.975 0.84 29.0 5.1 5

D=100 0.99 0.93 29.4 3.2 3.2

D=10000 0.9999 0.9998 29.0 0.6 0.6
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expressed in terms of grid units.  That is, the 𝐷 in the predicted accuracy model may be specified in terms 

of pixel distance and then converted to grid units by the solution process, where the size of the correction 

grid is specified in order to ensure a reasonable amount of spatial correlation between adjacent grid 

points.  However, it should be noted that high solution performance is also predicated on a reasonable 

number of conjugate measurements – the lower the spatial correlation across the grid, the more 

measurements desired.  

Table D.3.2-2 presents analytic results that illustrate the effects of spatial correlation on the degree to 

which pre-solution errors are systematic.  This is done via the computation of corresponding pre-solution 

relative (radial) error between two arbitrary locations in the image separated by a specified distance, 

where relative error is defined as 𝑟𝑒𝑙_𝑒𝑟𝑟𝑜𝑟 = √(𝜖𝑥1 − 𝜖𝑥2)
2 + (𝜖𝑦1 − 𝜖𝑦2)

2.  The table actually 

tabulates the analytic computation of the square root of the expected value of 𝑟𝑒𝑙_𝑒𝑟𝑟𝑜𝑟 or “rel sigma”, 

also termed “relative uncertainty”. 

As seen in the table, even with high a priori spatial correlation, there is still appreciable variation in errors 

at different locations in the image.  Correlation has to increase to greater than 0.99 at a distance of 1 grid 

unit apart before relative errors in the image become negligible, consistent with errors across the image 

that are literally a bias, albeit a different bias for each realization or image.  This is consistent with the 

flexibility and practicality of the correction grid and with the representation of underlying errors as a 

random field.  Note that a distance of 7 grid units in the table is approximately the diagonal distance across 

the assumed square image. 

Table D.3.2-2: Analytic results showing sensitivity of relative uncertainty to the spdcf distance constant 𝐷 

 

Finally, Table D.3.2-3 presents Monte Carlo results of the sensitivity of the performance of the “cor grid” 

solution method to the validity of its assumed a priori predictive statistics.  15 randomly located conjugate 

measurements were assumed in each of 200 independent realizations per case (assumed vs actual error 

model pair).   

 

 

Actual Error Spdcf correlation correlation analtyic analytic analytic

Model distance constant at 1 grid unit at 7 grid units abs sigma rel sigma (pixels) rel sigma (pixels)

D in grid units (pixels) at 1 grid unit at 7 grid units

"Pred Acc" D→0 →0 →0 28.3 →40.0 →40.0

D=5 0.82 0.25 28.3 17.0 34.6

D=10 0.9 0.5 28.3 12.7 28.2

D=20 0.95 0.7 28.3 8.9 21.9

D=40 0.975 0.84 28.3 6.3 16.0

D=100 0.99 0.93 28.3 4.0 10.6

D=10000 0.9999 0.9998 28.3 0.4 0.5

D→infinity →1 →1 28.3 →0 →0
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Table D.3.2-3: Monte Carlo results (rms) regarding the sensitivity of solution results to correct a priori 

modeling of errors in the “cor grid” WLS solution process 

 

As illustrated in the table, post-solution errors are virtually invariant for the range of a priori mismodeling 

considered, but the solution’s a posteriori or predicted accuracy is not, as expected.    

In addition, regardless the assumed values of sigma and 𝐷, image location errors are still assumed to 

correspond to a homogeneous random field, i.e., (a priori) predictive statistics, whatever their correct 

values, are assumed invariant across the image.  In addition, the results in Table D.3.2-3 are also 

predicated on the assumption that the spatial correlation of errors is reasonably consistent with a CSM 

four parameter spdcf with the value of the major parameter, distance constant 𝐷, possibly incorrect. 

D.3.3 Summary and conclusions 

The correction grid or “cor grid” solution method worked well and was robust in all circumstances with 

one exception: solution predicted accuracy (sigma) was not reliable if the a priori predictive statistics were 

significantly different than their actual counterparts, as is to be expected.  Also, the higher the a priori 

spatial correlation between adjacent points in the correction grid and the greater the number of conjugate 

measurements or the better located the measurements (not random), the better the actual solution 

accuracy or errors. 

The “affine” solution was less robust, but performed very well if actual errors were “Affine” and consistent 

with the solution’s a priori predictive statistics.  If the actual errors were not consistent with the solution’s 

a priori predictive statistics, the solution predicted accuracy was extremely unreliable and optimistic in 

particular.  Perhaps future applied research of a “hybrid” solution approach that combines “cor grid” with 

“affine” is warranted in appropriate circumstances.  In the interim, the “cor grid” approach is 

recommended for Commodities data with little or no reliable accuracy pedigree. 

As a final comment, only absolute errors corresponding to the adjusted image were addressed.  Detailed 

quantification of relative error awaits further applied research.  However, based on the figures presented 

throughout appendix D and an informal comparison of the degree of similarity for 2d post-adjustment 

errors (red vectors or quivers) in the same image as a measure of relative accuracy, relative error appears 

reasonably small for the baseline adjustment method, even when the true error model is affine.  Note 

Actual sigma Actual D WLS: cor grid WLS: cor grid Pre-soln errors Post- soln errors: Post-soln pred

(pixels) (grid units) assumed sigma assumed D (pixels) cor grid sigma: cor grid

(pixels) (grid units) (pixels) (pixels)

20 10 20 10 28.6 9.6 9.6

20 10 20 5 29.0 9.8 13.2

20 10 20 20 28.4 9.6 6.8

20 10 10 10 28.1 9.5 4.8

20 10 40 10 28.9 9.7 18.9
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that relative error between two locations in an image is the difference between their red quivers in the 

corresponding figure. 

Simulation: MATLAB Pseudo-Code 

The following presents non-optimized MATLAB code (“pseudo-code”) that was used to generate the 

simulation results presented earlier in this appendix: 

 

%”TGD2f_grid_vs_affine” 

  
%23 November 2018 

  
%This program compares the performance of a correction grid vs an affine 
%transformation-based correction for an image using simulated errors and 
%measurements 

  
%Actual errors correspond to either "grid" or "affine", i.e., the actual 
%error model is selectable 

  
%Implemented correction approach corresponds to either "grid" or "affine", and 
%both are implemented below as separate solutions/corrections, but share 
%the same measurement errors and image (systematic) errors for valid 
%performance comparisons 

  
%grid corrections use "optimal" extended parameters approach 

  
%check points correspond to grid points, regardless the selected 
%correction approach. 

  
%check point errors and predicted accuracies are to be plotted, including 
%quiver plots of before/after adjustment; Monte Carlo statistics are also 
%computed over multiple realizations of the simulation/solutions 

  
%only 1 product (image) is applicable and ground control points are applicable,  
%the latter's "pred stats" are input 

  
%The pred stats for measurement errors are input 

  
%number of measurements specified and underlying locations (nominally)  
%randomly generated 

  
%grid assumed square and number of points specified per grid row for 
%simplicity 

  
%size of square AOI specified in grid units (width) 

  
%All distance units are in number of “grid units”.  All error units are in  
%pixels for simplicity.   

  
%Note: in an actual application, there would be a deterministic 
%relationship between pixels and grid units, e.g. a 25k x 25k pixel image 
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%with a 6x6 correction grid has 5k pixels per grid unit, which is the  
%distance in pixels between adjacent grid points; if an affine 
%transformation, there are no grid points per se but they are applicable 
%below as check points 

  

   
% DEFINITIONS OF INPUT PARAMETERS: 

   
%AOI_width: width of square AOI in grid units 

  
%n_grid_pts_row: number of grid points in one direction (rows) of a square  
%correction grid 

  
%n_meas: the number of conjugate (product-control point)measurements 

             
%error_flag: 1 (grid) or 2 (affine) for actual error model 

  
%(both soln approaches always performed for comparison) 

  
%pred_sigmas: for corrections and/or actual errors, as applicable, 2x1 
%vecttor for x (line) and y (sample) errors 

  
%spdcf: for corrections and/or actual errors, as applicable, scalar 
%function for both image line (x) and sample (y) coordinates errors, a 
%function of horizontal distance (isotropic spdcf); if a CSM four parameters 
%model,2 parameters defining the spdcf (A and D), otherwise linear decay with 
%specified zero crossing distance 

  
%pred_sigma_cntrl: as above but for control points with independent errors 
%between control points for simplicity 

  

  
%affine_sigma: sigmas for 4 affine parameter errors   
%(s, alpha,x0,y0, rotations and scale relative to AOI center 

  
%meas_sigma: common sigma for all components of all measurement (mensuration) 
%errors 

  
%print_flag: detailed print flag (value of 1 specifies print is enabled) 

  

  
%specify inputs: 

  
%Monte_Carlo Option: 
MC_flag=1 
MC_real=200   %specified number of independent realizations 

  
error_flag=1 %1 specifies grid (MGRF) type error model, 2 an affine-type error 

model 
plot_cntrl_flag=1   %1 specifies plot location of cntrl pts too (in grid units) 

  
print_flag=0 
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AOI_width=5      %grid units 
n_grid_pts_row=6 
n_meas=15 
meas_sigma=1   %pixels 

  
if(print_flag==1)   %reduce size of outputs for better intuition/"debug" 
AOI_width=2 
n_grid_pts_row=3 
n_meas=2 
end 

  
if(MC_flag==1) 
print_flag=0; 
end 

  
pred_sigma=zeros(2,1);  %Correction grid model sigmas (pixels) (note: 

%Correction grid model consists of predictive stats that corresponds to a 

%homogeneous 2D random field in image-space 
pred_sigma(1,1)=20;      
pred_sigma(2,1)=20; 

  
spdcf=zeros(2,1);   %Correction grid model spdcf (assumed CSM four parameter 

model 

%with alpha and beta equal to zero) 
spdcf(1,1)=1;  %(A unitless) 
spdcf(2,1)=10;  %(D in grid units) 
spdcf 

  
pred_sigma_cntrl=zeros(2,1);  %control point error sigma (standard deviation) 
pred_sigma_cntrl(1,1)=0.25;   %pixels 
pred_sigma_cntrl(2,1)=0.25; 

  
affine_sigma=zeros(4,1);   %sigmas for affine systematic errors 

  
affine_sigma(1,1)=4;    %pixels/grid unit   (scale factor) 
affine_sigma(2,1)=6;   %pixels/grid unit    (rotation) 
affine_sigma(3,1)=12;     %pixels  (x or image line offset) 
affine_sigma(4,1)=12;     %pixels  (y or image sample offset) 

  
affine_sigma 

  

  
%DERIVED PARAMETERS, PREDICTIVE (A PRIORI) STATS, ERRORS, ETC.: 

  
n_cntrl_pts=n_meas 
n_grid_pts=n_grid_pts_row^2   %also number of check points 
n_grid_extended_pts=n_grid_pts+n_cntrl_pts 

  
pred_cov=zeros(2,2); 
pred_cov(1,1)=pred_sigma(1,1)^2; 
pred_cov(2,2)=pred_sigma(2,1)^2; 
pred_cov 
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pred_cov_cntrl=zeros(2,2); 
pred_cov_cntrl(1,1)=pred_sigma_cntrl(1,1)^2; 
pred_cov_cntrl(2,2)=pred_sigma_cntrl(2,1)^2; 
pred_cov_cntrl 

  
rms_radial_pre_soln_errors=0; %initialize ensemble statistics for Monte Carlo 
rms_radial_errors_grid=0; 
rms_radial_errors_affine=0; 
rms_radial_sigmas_grid=0; 
rms_radial_sigmas_affine=0; 

  

  
%LOOP OVER REALIZATIONS 

  
if(MC_flag~=1) 
    MC_real=1; 
end 

  
for mm=1:MC_real   %loop over realizations 

  

  
%generate image locations for grid (check) points: 

  
Loc_X_grid=zeros(2,n_grid_pts); 
temp=1; 
kk=AOI_width/(n_grid_pts_row-1); 

  
for i=1:n_grid_pts_row    %y coordinate 
    for j=1:n_grid_pts_row   %x coordinate      
        Loc_X_grid(1,temp)=kk*(j-1); 
        Loc_X_grid(2,temp)=kk*(i-1); 
        temp=temp+1;       
    end 
end 

         

  
%generated image locations for (conjugate) contrl points: 

%(NOTE: don't "select" cntrl point locations that are identical to grid pt 
%locations otherwise a priori covariance matrix containing all points is not 
%positive definite (invertible), i.e., has eigenvalues equal to zero; not an 

issue if a random selection as done below) 

 

  
Loc_X_cntrl=zeros(2,n_cntrl_pts); 

  
for i=1:n_cntrl_pts             
        Loc_X_cntrl(1,i)=AOI_width*rand(1,1); 
        Loc_X_cntrl(2,i)=AOI_width*rand(1,1);  
end 

  
if(print_flag==1) 
    Loc_X_grid 
    Loc_X_cntrl 
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end 

  
%generate a priori cov (Cov_1) for actual errors for corection grid (check pts)   
%plus extended (cntrl pts), i.e. n_grid_extended; assumes errors are consistent 
%with "grid"or MGRF model 

  
%remember check pts are grid pts; a priori cov applicable for use in the soln 

%too as described later, i.e.,actual errors are generated consistent with  
%the a priori predictive statistics 

 
n=n_grid_extended_pts; 

  
Cov_1=zeros(2*n,2*n); 
Loc_X=zeros(2*n,1);   %put all locations of interest in one vector; 
                      %grid followed by (conjugate) cntrl 

  
temp=1; 
for i=1:n_grid_pts 
    Loc_X(temp,1)=Loc_X_grid(1,i); 
    Loc_X(temp+1,1)=Loc_X_grid(2,i); 
    temp=temp+2; 
end 

  
for i=n_grid_pts+1:n 
    j=i-n_grid_pts; 
    Loc_X(temp,1)=Loc_X_cntrl(1,j); 
    Loc_X(temp+1,1)=Loc_X_cntrl(2,j); 
    temp=temp+2; 
end 

         
if(print_flag==1) 
    Loc_X 
end 

  
for i=1:n 
    for j=1:n      
        tempi=2*(i-1)+1; 
        tempj=2*(j-1)+1; 
        dist=sqrt( (Loc_X(tempi,1)-Loc_X(tempj,1))^2 +... 
            (Loc_X(tempi+1,1)-Loc_X(tempj+1,1))^2 );         
        for k=1:2 
            for l=1:2      
                Cov_1(k+tempi-1,l+tempj-1)=pred_cov(k,l)*spdcf(1,1)*... 
                    exp(-dist/spdcf(2,1));              
            end 
        end       
    end 
end 

  
%generate a priori cov (Cov 2) for actual affine errors; use first part of   
%cov for solution process per se if applicable (project to image locations  
%of interest later): 

  
Cov_2=zeros(4,4); 
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for i=1:4 
    Cov_2(i,i)=affine_sigma(i,1)^2; 
end 

  
if(print_flag==1)     
    Cov_1 
    Cov_2 
    eig_Cov_1=eig(Cov_1) 
    eig_Cov_2=eig(Cov_2)     
end 

  
%generated actual errors (Gaussian distributed) based on Cov_1: 

  
Errors_via_Cov_1=sqrtm(Cov_1)*randn(2*n,1); 

  
%generate actual errors (Gaussian distributed) based on Cov_2: 

  
Errors_via_Cov_2=sqrtm(Cov_2)*randn(4,1); 

  
%as a hard coded "option" to the above, can set above errors to determistics  
%values instead 

  
if(print_flag==1) 
    Errors_via_Cov_1 
    Errors_via_Cov_2 
end 

  
%for affine errors, generate corresponding errors at all locations of interest,  
%i.e., check pt (grid) locations followed by cntrl pts 

  
n_loc_affine=n_grid_extended_pts; 

  
Loc_X_affine=Loc_X; 

  
Errors_proj_via_Cov_2=zeros(2,n_loc_affine);  %second index is location (pt) id 

  
temp_error_matrix=Errors_via_Cov_2(1,1)*eye(2); 
temp_error_matrix(1,2)=Errors_via_Cov_2(2,1); 
temp_error_matrix(2,1)=-temp_error_matrix(1,2); 

  
temp_vec=zeros(2,1); 

  
temp_vec(1,1)=Errors_via_Cov_2(3,1); 
temp_vec(2,1)=Errors_via_Cov_2(4,1); 

  
temp_vec_1=zeros(2,1); 

  
B_partials_temp=zeros(2,4); 

  
B_partials=zeros(2,4,n_loc_affine);   %second index is location (pt) id 

  
%center of grid: 

  



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

188 

center=zeros(2,1); 
center(1,1)=AOI_width/2; 
center(2,1)=center(1,1); 

  
for i=1:n_loc_affine 

     
    tempi=2*(i-1)+1; 
    temp_vec_1(1,1)=Loc_X_affine(tempi,1); 
    temp_vec_1(2,1)=Loc_X_affine(tempi+1,1);     
    temp_vec_1=temp_vec_1-center;      
    temp_vec_2=temp_error_matrix*temp_vec_1;   
    Errors_proj_via_Cov_2(1,i)=temp_vec_2(1,1)+temp_vec(1,1); 
    Errors_proj_via_Cov_2(2,i)=temp_vec_2(2,1)+temp_vec(2,1); 

     
    %go ahead and compute partial derivatives of measurements wrt affine 
    %parameters used in solution for affine corrections later 

     
    B_partials_temp(1,1)=temp_vec_1(1,1); 
    B_partials_temp(1,2)=temp_vec_1(2,1); 
    B_partials_temp(1,3)=1; 
    B_partials_temp(1,4)=0; 
    B_partials_temp(2,1)=temp_vec_1(2,1); 
    B_partials_temp(2,2)=-temp_vec_1(1,1); 
    B_partials_temp(2,3)=0; 
    B_partials_temp(2,4)=1;    

     
    for j=1:2 
        for k=1:4 
            B_partials(j,k,i)=B_partials_temp(j,k);%third index is location 

(pt) id 
        end 
    end 

     
end 

  
if(print_flag==1) 
    Errors_proj_via_Cov_2 
    B_partials 
end 

         
%generate covariance for (sum of) mensuration errors for cntrl point 
%and their conjugate locations in the image: 

  
Cov_meas=meas_sigma^2*eye(2*n_cntrl_pts); 

  
%generate covariance for cntrl points systematic errors: 

  
Cov_cntrl=zeros(2*n_cntrl_pts,2*n_cntrl_pts); 

  
for i=1:n_cntrl_pts     
    for j=1:2 
        for k=1:2 
            Cov_cntrl((i-1)*2+j,(i-1)*2+k)=pred_cov_cntrl(j,k); 
        end 
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    end     
end 

  
%generated covariance for (total) measurement errors: 

  
Cov_meas_total=Cov_meas+Cov_cntrl; 

  
%generate measurement errors:  

  
Meas_errors=sqrtm(Cov_meas_total)*randn(2*n_cntrl_pts,1); 

  
if(print_flag==1) 
    Cov_meas_total 
    Meas_errors 
end 

  
%generate measurements (differences) for inputs into WLS, a function of 
%measurement errors, and image errors based on either grid or affine, 
%as applicable;  

  
%get image errors (only) too at check pts for use later 

  
Errors_cntrl=zeros(2*n_cntrl_pts,1); 
temp=n_grid_pts; 
Errors_check=zeros(2*temp,1); 

  
if(error_flag==1)   %assume grid error model 

     
%recall that Cov_1 relects grid pts followed by cntrl pts 

  
for i=1:n_cntrl_pts     
Errors_cntrl(2*(i-1)+1,1)=Errors_via_Cov_1(2*temp+2*(i-1)+1,1); 
Errors_cntrl(2*(i-1)+2,1)=Errors_via_Cov_1(2*temp+2*(i-1)+2,1); 
end 

  
for i=1:temp     
Errors_check(2*(i-1)+1,1)=Errors_via_Cov_1(2*(i-1)+1,1); 
Errors_check(2*(i-1)+2,1)=Errors_via_Cov_1(2*(i-1)+2,1); 
end 

  
end 

  
if(error_flag==2)   %assume affine errors 

     
%recall that projected errors based on Cov 2 are explictly indexed by 
%location (pt) id unlike those based on Cov_1 above 

     
for i=1:n_cntrl_pts 
Errors_cntrl(2*(i-1)+1,1)=Errors_proj_via_Cov_2(1,i+temp); 
Errors_cntrl(2*(i-1)+2,1)=Errors_proj_via_Cov_2(2,i+temp); 
end 

  
for i=1:temp     
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Errors_check(2*(i-1)+1,1)=Errors_proj_via_Cov_2(1,i); 
Errors_check(2*(i-1)+2,1)=Errors_proj_via_Cov_2(2,i); 
end 

  
end 

  
%remember, a priori pred errors are eqaul to zero 

  
delta_M=Errors_cntrl+Meas_errors; 

  
if(print_flag==1) 
    Cov_meas_total 
    Meas_errors 
    Errors_cntrl 
    delta_M 
end 

  
%PERFORM (both) WLS SOLUTIONS: 

  
W=Cov_meas_total^-1; 

  
%correction grid solution 

     
A_priori_cov=Cov_1; 

  
B=zeros(2*n_cntrl_pts,2*n_grid_extended_pts); 

  
temp=2*n_grid_pts; 
for i=1:2*n_cntrl_pts    
    B(i,temp+i)=1; 
end 

  
Cov_X_cor=(A_priori_cov^-1+B'*W*B)^-1; 
delta_X_cor=Cov_X_cor*B'*W*delta_M; 

  
Sigma_X_cor=zeros(2*n_grid_extended_pts,1); 
for i=1:2*n_grid_extended_pts 
    Sigma_X_cor(i,1)=sqrt(Cov_X_cor(i,i)); 
end     

  
if(print_flag==1) 
    B 
end 

  
%affine correction 

  
A_priori_cov=Cov_2; 

  
B=zeros(2*n_cntrl_pts,4); 

  
temp=n_grid_pts; 

  
for i=1:n_cntrl_pts 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

191 

    temp1=(i-1)*2; 
    for j=1:2 
        for k=1:4 
            B(temp1+j,k)=B_partials(j,k,temp+i);  
        end 
    end 
end 

  
Cov_X_aff=(A_priori_cov^-1+B'*W*B)^-1; 
delta_X_aff=Cov_X_aff*B'*W*delta_M; 

  
Sigma_X_aff=zeros(4,1); 
for i=1:4 
    Sigma_X_aff(i,1)=sqrt(Cov_X_aff(i,i)); 
end 

  
if(print_flag==1) 
    B 
end 

  
if(mm==1)  %first realization - some detailed print 
delta_X_cor 
Sigma_X_cor 
%Cov_X_cor 
delta_X_aff 
Sigma_X_aff 
%Cov_X_aff 
end 

  
%COMPUTE PRE-SOLUTION ERRORS AT CHECK POINTS 

  
%remember applicable errors are check (grid) pts are a function of error_flag, 
%i.e., errors are either consistent with grid errors or affine errors 

  
Pre_soln_errors=Errors_check; 

  
if(mm==1) 
Pre_soln_errors 
end 

  
%APPLICABLE CORRECTED ERRORS (POST SOLUTION) AND A POSTERIORI COV AT CHECK 

POINTS: 

  
% do for each solution 

  
%grid (extended) solution, stored in single vector 

  
Post_soln_errors_grid=zeros(2*n_grid_pts,1); 

  
for i=1:2*n_grid_pts 
Post_soln_errors_grid(i,1)=Pre_soln_errors(i,1)-delta_X_cor(i,1); 
end 

  
Sigma_soln_errors_grid=zeros(2*n_grid_pts,1); 
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for i=1:2*n_grid_pts 
    Sigma_soln_errors_grid(i,1)=Sigma_X_cor(i,1); 
end 

  
if(mm==1) 
    Post_soln_errors_grid 
    Sigma_soln_errors_grid 
end 

  
%affine solution (more complicated, have to computed projected errors and 
%sigma); store in single vector: 

  
Post_soln_errors_affine=zeros(2*n_grid_pts,1); 

  
delta_X_affine_proj=zeros(2*n_grid_pts,1); 

  
B_temp=zeros(2,4); 

  
for i=1:n_grid_pts 
    temp1=(i-1)*2; 
    for j=1:2 
        for k=1:4 
            B_temp(j,k)=B_partials(j,k,i);  
        end 
    end 
    temp_proj=B_temp*delta_X_aff; 
    delta_X_affine_proj(temp1+1,1)=temp_proj(1,1); 
    delta_X_affine_proj(temp1+2,1)=temp_proj(2,1);     
end 

  
if(print_flag==1) 
    delta_X_affine_proj 
end 

  
for i=1:2*n_grid_pts 
Post_soln_errors_affine(i,1)=Pre_soln_errors(i,1)-delta_X_affine_proj(i,1); 
end 

  
if(mm==1) 
Post_soln_errors_affine 
end 

  
%computed corresponding a perteriori covariance (sigmas) as well 

  
Sigma_soln_errors_affine=zeros(2*n_grid_pts,1); 

  
B_temp=zeros(2,4); 

  
for i=1:n_grid_pts 
    temp1=(i-1)*2; 
    for j=1:2 
        for k=1:4 
            B_temp(j,k)=B_partials(j,k,i);  
        end 
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    end 
    cov=B_temp*Cov_X_aff*B_temp'; 
    Sigma_soln_errors_affine(temp1+1,1)=sqrt(cov(1,1)); 
    Sigma_soln_errors_affine(temp1+2,1)=sqrt(cov(2,2)); 
end 

  

  
%PERFORM PLOTS: 

  
%plot pre and post solution errors at grid (check) points for both solution 
%methods (same actual error model); do quiver plots 

  
if(mm==1) 
plot_grid_image(Pre_soln_errors,Post_soln_errors_grid,... 
    n_grid_pts_row,1,Loc_X_cntrl,n_cntrl_pts,plot_cntrl_flag) 

  
plot_grid_image(Pre_soln_errors,Post_soln_errors_affine,... 
    n_grid_pts_row,2,Loc_X_cntrl,n_cntrl_pts,plot_cntrl_flag) 
end 

  
for k=1:n_grid_pts   %sum ensemble statistics 

  
    rms_radial_pre_soln_errors=rms_radial_pre_soln_errors+... 
        Errors_check(2*(k-1)+1,1)^2+Errors_check(2*(k-1)+2,1)^2; 

     
    rms_radial_errors_grid=rms_radial_errors_grid+... 
    Post_soln_errors_grid(2*(k-1)+1,1)^2+Post_soln_errors_grid(2*(k-

1)+2,1)^2; 

  
    rms_radial_errors_affine=rms_radial_errors_affine+... 
    Post_soln_errors_affine(2*(k-1)+1,1)^2+Post_soln_errors_affine(2*(k-

1)+2,1)^2; 

  
    rms_radial_sigmas_grid=rms_radial_sigmas_grid+... 
        Sigma_soln_errors_grid(2*(k-1)+1,1)^2+Sigma_soln_errors_grid(2*(k-

1)+2,1)^2; 

     
    rms_radial_sigmas_affine=rms_radial_sigmas_affine+... 
        Sigma_soln_errors_affine(2*(k-

1)+1,1)^2+Sigma_soln_errors_affine(2*(k-1)+2,1)^2; 

     
end 

  

  
end   %end realization loop 

  
total=MC_real*n_grid_pts;      %compute/output final ensemble sample stats 
rms_radial_pre_soln_errors=sqrt(rms_radial_pre_soln_errors/total) 
rms_radial_errors_grid=sqrt(rms_radial_errors_grid/total) 
rms_radial_error_affine=sqrt(rms_radial_errors_affine/total) 
rms_radial_sigmas_grid=sqrt(rms_radial_sigmas_grid/total) 
rms_radial_sigmas_affine=sqrt(rms_radial_sigmas_affine/total)   
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function[] = plot_grid_image(errors_grid_pre,errors_grid_post, ... 
n_grid_pts_row,fcn_number,cntrl_loc,n_c,plot_cntrl_flag) 

  
x=zeros(n_grid_pts_row,n_grid_pts_row); 
y=zeros(n_grid_pts_row,n_grid_pts_row); 
u=zeros(n_grid_pts_row,n_grid_pts_row); 
v=zeros(n_grid_pts_row,n_grid_pts_row); 
temp=0; 
max_uv=0; 

  
%pre-solution errors 

     
    for i=1:n_grid_pts_row 
        for j=1:n_grid_pts_row             
            x(i,j)=j-1; 
            y(i,j)=i-1;            
            u(i,j)=errors_grid_pre(temp+1,1); 
            v(i,j)=errors_grid_pre(temp+2,1);                   
            maxu=abs(u(i,j)); 
            maxv=abs(v(i,j)); 
            if(maxu>max_uv) 
                max_uv=maxu; 
            end 
            if (maxv>max_uv) 
                max_uv=maxv; 
            end           
            temp=temp+2;            
        end 
    end 

     
    for i=1:n_grid_pts_row 
        for j=1:n_grid_pts_row  
            u(i,j)=u(i,j)/max_uv; 
            v(i,j)=v(i,j)/max_uv;        
        end 
    end 

     
%actual errors are max_uv larger 
r_max_uv=round(max_uv,1); 
figure(fcn_number) 
clf 
scale=0; 

  
quiver(x,y,u,v,scale,'b'); 

  
xlabel('check point col (x or image line)'); 
ylabel('check point row (y or image sample)'); 
title(['pre (b) & post soln (r) check pt image location errors (pixels); sf = 

',... 
    num2str(r_max_uv)]); 

  
%post-solution errors: 
hold on 
temp=0; 
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    for i=1:n_grid_pts_row 
        for j=1:n_grid_pts_row           
            x(i,j)=j-1; 
            y(i,j)=i-1;           
            u(i,j)=errors_grid_post(temp+1,1)/max_uv; 
            v(i,j)=errors_grid_post(temp+2,1)/max_uv;          
            temp=temp+2;           
        end 
    end 

     
quiver(x,y,u,v,scale,'r'); 

  
if(plot_cntrl_flag==1) 
x=zeros(n_c,1); 
y=zeros(n_c,1); 
for i=1:n_c 
    x(i,1)=cntrl_loc(1,i); 
    y(i,1)=cntrl_loc(2,i); 
end 
scatter(x,y); 
end 

  
hold off 

  
end 

 

 

 

 MGRF representation and adjustment of Geolocation 

Products 

This appendix details a Mixed Gaussian Random Field (MGRF) associated with a Geolocation Product 

Predicted Accuracy Model, typically for the representation of the predicted accuracy of a 3d geolocation 

𝑋 and the predicted relative accuracy between two geolocations 𝑋1 and 𝑋2 contained in the product.  This 

appendix also details product adjustment for improved accuracy based on a correction grid and an MGRF 

representation of predicted accuracy.   

The application and detailed definitions of the MGRF in support of a geolocation product were developed 

as applied research and were part of the overall development of this document. 

This appendix was referenced in Section 5.3.3.3 (“Mixed Gaussian Random Field”) of the main body of this 

document, where an overview of an MGRF was presented and two important caveats were also made 

regarding an MGRF and this appendix: 

 An MGRF is the recommended core component of a predicted accuracy model for geolocation 

products, but its implementation is optional.  If not implemented, the “standard” predicted 

accuracy model for a geolocation product is implemented which models errors as a single 

homogeneous random field as detailed in Appendix B. 
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o The “standard” predicted accuracy model is also equivalent to an MGRF with only one 

partition, as defined later in this appendix. 

 This appendix (Appendix E) concentrates on the overall concept of an MGRF, its corresponding 

predictive statistics and their mathematical derivations, and the recommended metadata or its 

equivalent that contains the predictive statistics.  It also discusses the use of these predictive 

statistics by the “down-stream” user/application, including support for the adjustment of the 

geolocation product for improved accuracy.  However, although this appendix outlines methods 

for the population of an MGRF based on a populated accuracy assessment, i.e., how to compute 

the actual values of its predictive statistics, it does not detail these methods.   

o See Appendix B for methods and their details for the population a “standard” predicted 

accuracy model. They are based on the use of a corresponding populated accuracy 

assessment model generated using sample statistics of geolocation error.  Section B.5.2 

also discusses extension of these methods to an MGRF. 

Now that the charter of Appendix E has been introduced, its sections are outlined as follows: 

 E.1 Preliminaries: Statistics corresponding to Random Variables and Random Vectors 

 E.2 Mixed Gaussian Random Fields (MGRF): Descriptive Contents and a priori Statistics 

o E.2.1 Geolocation errors represented as a Random Field 

o E.2.2 Geolocation errors corresponding to Partitions in the MGRF 

o E.2.3     Geolocation errors corresponding to arbitrary geolocations in the MGRF 

o E.2.4     Optional Generalizations 

o E.2.5 Computation of scalar accuracy metrics 

o E.2.6 Summary of relevant MGRF statistical terminology/symbology 

 E.3  Adjustability of the MGRF (product) 

 E.4 Concept of Operations using MGRF with examples 

 E.5 Recommended MGRF metadata content-format associated with a geolocation product 

 E.6 Summary 

Sections E.1 and E.2 include mathematical derivations, analytic examples, and graphics related to MGRF 

a priori or predictive statistics of the geolocation error 𝜖𝑋.   

Section E.3 discusses the optional adjustment or correction of an MGRF (product), possibly when fusing 

its information with other products.  The latter not only provides for improved product accuracy, but 

consistent geolocations across the products as well. 

Section E.4 presents a recommended Concept of Operations for the representation of the predicted 

accuracy of a geolocation product based on MGRF, i.e., for the population of a Geolocation Product 

Predicted Accuracy Model and its receipt/use by a “down-stream” user/application.  It includes examples 

for insight; in particular, simulation-based realizations or product “instances” of geolocation errors 

associated with product geolocations.    

Section E.4 also briefly discusses the relationship of an MGRF-based representation of predicted accuracy 

with corresponding and previous accuracy assessments that consist of sample statistics of geolocation 
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error that are used to initially populate and subsequently tune the predicted accuracy model.  The 

similarities between the MGRF-based representation of predicted accuracy with the Generic Point Cloud 

Model (GPM) is also discussed, the latter preferred but typically unavailable for External Data used in the 

NSG; hence, the recommended use of MGRF. 

Section E.5 presents an overview of recommended MGRF metadata content or its equivalent applicable 

to predicted accuracy, i.e., essentially the contents of a populated Geolocation Product Predicted 

Accuracy Model. 

Section E.6 provides a summary of features regarding the use of MGRF for the representation or modeling 

of predicted accuracy for a geolocation product. It also includes recommended future applied research.   

Readers are encouraged to first read Section 5.3.3.3 in the main body of this document for an overview 

of an MGRF and its representation of predicted accuracy prior to reading this appendix.  Following this, 

those readers not interested in mathematical details and the definitions of the various predictive statistics 

may also skip Sections E.1-E.3 of this appendix, if so desired.    

Although the mathematical details and definitions regarding the various predictive statistics associated 

with the representation of product accuracy via MGRF are somewhat detailed/complex as presented in 

Sections E.1-E.3, Appendix F presents MATLAB code that calculates virtually all of them. 

To close out this introduction, Figures E-1 and E-2 present an example of a realization of a random field 

of 3d geolocation errors over a portion of a 3d geolocation product, where an MGRF of interest consists 

of one or more such random fields and their combinations in various partitions of the product as detailed 

later.  Figure E-1 represents vertical errors as a heat plot over a horizontal tangent plane (grid) in the 

product’s “footprint”. 

 

Figure E-1: Simulated vertical errors corresponding to a portion of a 3d geolocation product 
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Figure E-2 represents horizontal errors as an automatically scaled quiver plot (red vectors are interpolated 

values).  Note the spatial correlation (similarity) of nearby errors in each plot, the degree of which is 

specifiable by a priori statistics on a per error component basis in the product’s metadata.  See TGD 2e 

(Monte Carlo Simulation) regarding details of the simulation technique used to generate the realization. 

 

Figure E-2: Simulated horizontal errors corresponding to a portion of a 3d geolocation product 

Geospatial errors are correlated between geolocation in the same or specific realization of a geolocation 

product.  They are modelled as uncorrelated between different realizations, as is reasonable.  A key 

feature of the MGRF representation of predicted accuracy is its appropriate representation of the spatial 

correlation of errors – necessary for optimal use of the product and for reliable predicted accuracies. 

E.1 Preliminaries: Statistics corresponding to random variables and random 

vectors 

This section of the appendix provides an overview of random variables and random vectors as background 

information prior to the description of an MGRF.  In general, an MGRF is a collection of random vectors.   

Furthermore, this section is recommended to all, even to those familiar with statistics and probability in 

order to introduce relevant terminology/symbology used throughout this appendix:  

Assume that the 𝑘 × 1 error 𝜖𝑋 corresponds to the 𝑘 × 1 geolocation 𝑋 (1 ≤ 𝑘 ≤ 3) with coordinates 

aligned with a Local Tangent Plane (LTP) coordinate system, such as East North Up (ENU).  Define the 

corresponding a priori statistics for the Gaussian distributed random vector 𝜖𝑋: 
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mean-value of error �̅� ≡ 𝐸{𝜖𝑋}, where 𝐸{} corresponds to expected value;   (E.1-1) 

covariance matrix about the mean 𝐶𝑋 ≡ 𝐸{(𝜖𝑋 − �̅�)(𝜖𝑋 − �̅�)𝑇};     (E.1-2) 

multivariate Gaussian distribution with probability density function 𝑝𝑑𝑓,    (E.1-3) 

𝑝𝑑𝑓(𝜖𝑋) ≡ ((2𝜋)𝑘|𝐶𝑋|)
−1/2

𝑒−1/2(𝜖𝑋−�̅�)𝑇𝐶𝑋
−1(𝜖𝑋−�̅�), and where |𝐶𝑋| is the determinant of 𝐶𝑋; 

corresponding cumulative distribution function 𝑐𝑑𝑓,  

𝑐𝑑𝑓(𝜖𝑋∗) ≡ ∭ 𝑝𝑑𝑓(𝜖𝑋)𝑑𝜖𝑋
𝜖𝑋∗

−∞
, where the limits of integration apply to all (up to 3)  (E.1-4) 

integrals, and where 𝑐𝑑𝑓(𝜖𝑋∗) = 𝑝𝑟𝑜𝑏(𝜖𝑋 ≤ 𝜖𝑋∗} 

 

Note that in general, regardless the specific type of probability distribution:  

�̅� = 𝐸{𝜖𝑋} = ∭ 𝜖𝑋𝑝𝑑𝑓(𝜖𝑋)𝑑𝜖𝑋
∞

−∞
 , a 𝑘 × 1 vector, and     (E.1-5) 

𝐶𝑋 = 𝐸{(𝜖𝑋 − �̅�)(𝜖𝑋 − �̅�)𝑇} = ∭ (𝜖𝑋 − �̅�)(𝜖𝑋 − �̅�)𝑇𝑝𝑑𝑓(𝜖𝑋)𝑑𝜖𝑋
∞

−∞
, a 𝑘 × 𝑘 matrix.  (E.1-6) 

 

Some of the above notation drops the “error symbol” 𝜖 corresponding to 𝜖𝑋 for convenience, e.g., 𝐶𝑋  

actually corresponds to 𝐶𝜖𝑋.  Also, even though 𝑝𝑑𝑓 and 𝑐𝑑𝑓 are functions of a random vector, their 

resultant values are scalars.  And since we assume that 𝜖𝑋 is Gaussian distributed, both 𝑝𝑑𝑓 and 𝑐𝑑𝑓 are 

completely characterized by the random vector’s mean-value and covariance matrix. 

The 𝑘 × 1 random vector 𝜖𝑋 is a vector of 𝑘 random variables.   For example, if 𝑘 = 3, 𝜖𝑋 = [
𝜖𝑥
𝜖𝑦
𝜖𝑧

]. Thus, 

if 𝑘 = 1, the random vector 𝜖𝑋 is also a random variable, either 𝜖𝑥, 𝜖𝑦, or 𝜖𝑧, as specified. 

 

Figure E.1-1 presents three different probability density functions (𝑝𝑑𝑓s) for a Gaussian (normally) 

distributed random variable 𝜖𝑋 = 𝜖𝑥, each with a specified mean-value �̅� = 𝑚 and covariance matrix 

𝐶𝑋 = [𝜎2].   For convenience in the figure’s axis labels and titles, 𝜖𝑥 corresponds to x, and 𝜎 (standard 

deviation) to sigma.   
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Figure E.1-1: Probability density functions (𝑝𝑑𝑓s) for the random variable𝜖𝑥; blue {m=0, sigma=1}, red 

{m=0, sigma=2}, green {m=2, sigma=1}; 𝑝𝑑𝑓(𝜖𝑥)corresponds to probability density (unit-less/meters) 

versus 𝜖𝑥 (meters), where 𝜖𝑥 ≡ 𝑥 in the figure 

Figure E.1-2 presents the cumulative distribution function 𝑐𝑑𝑓 corresponding to the first 𝑝𝑑𝑓 (blue) in 

Figure E.1-1. 

 

Figure E.1-2: Cumulative distribution function for a random variable𝜖𝑥; 𝑐𝑑𝑓(𝜖𝑥)corresponds to the 

probability (unit-less) that 𝜖𝑥 ≤ 𝜖𝑥∗(meters), where 𝜖𝑥∗ ≡ 𝑥 in the figure 
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Figure E.1-3 presents the probability density function (𝑝𝑑𝑓) for a Gaussian (normally) distributed random 

vector𝜖𝑋 = [
𝜖𝑥
𝜖𝑦], with a specified mean-value �̅� = [

0
0
] and covariance matrix𝐶𝑋 = [

𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ] =

[
1 0
0 1

].  Again, the convention in this appendix is that 𝜖𝑥 and 𝜖𝑦 correspond to x and y in the figure. 

 

 

Figure E.1-3: Probability density function for a 2d multivariate random vector 

Figure E.1-4 presents the probability density function for the same case except that there is high positive 

correlation between the error components 𝜖𝑥 and𝜖𝑦, i.e., the correlation coefficient𝜌 = 0.98.   

 

Figure E.1-4: Probability density function for a 2d multivariate random vector with high correlation 

between its two components. 
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Note that the type of correlation illustrated above is generally termed “intra-state vector” correlation in 

these Technical Guidance Documents (TGDs), and differs from “inter-state vector” correlation, discussed 

later in this appendix corresponding to spatial correlation.  See TGD 1 (Overview and Methodologies) for 

more details regarding types of correlation.  See TGD 2a (Predictive Statistics) and TGD 2b (Sample 

Statistics) for further details regarding multivariate statistics. 

In addition, the above multivariate Gaussian probability density function 𝑝𝑑𝑓s and cumulative distribution 

function 𝑐𝑑𝑓s, are available in the MATLAB Statistics and Machine Learning toolbox via “mvnpdf” and 

“mvncdf”, respectively.  A multivariate Gaussian mixture probability density function 𝑔𝑚𝑝𝑑𝑓 and 

cumulative distribution 𝑔𝑚𝑐𝑑𝑓, discussed later, are also available in the same toolbox via “pdf(gm,X)” 

and cdf(gm,X)”, respectively.  

No toolbox is needed in MATLAB for a scalar random variable, i.e., for 𝑘 × 1 𝜖𝑋, where 𝑘 = 1 and 

corresponding to either 𝜖𝑥, 𝜖𝑦, or 𝜖𝑧 in our application.  The corresponding 𝑝𝑑𝑓 and 𝑐𝑑𝑓 are available via 

“pdf” and “cdf”, respectively.  𝑔𝑚𝑝𝑑𝑓 and 𝑔𝑚𝑐𝑑𝑓 are not directly available.  Although, not as convenient, 

multivariate counterparts to all of the above can also be generated without a toolbox in MATLAB by the 

creation of functions and the numerical integration of functions. 

E.2 Mixed Gaussian Random Field (MGRF): Descriptive content and a priori 

statistics 

We now consider a Mixed Gaussian Random Field (MGRF) corresponding to errors 𝜖𝑋 of geolocations 𝑋 

contained within a 3d geolocation product (aka “product”).   

 

A Mixed Gaussian Random Field is defined by two key entities: (1) a specified collection of random fields 

and (2) a specified collection of partitions. 

An individual random field is a collection of random vectors 𝜖𝑋 indexed by their corresponding 

geolocation 𝑋.  These random vectors are spatially correlated.  That is, two geolocations in the same 

realization (product instance) contain similar errors – the closer together the two geolocations are, the 

more similar the errors.  An individual error 𝜖𝑋 is also assumed Gaussian distributed.  See TGD 1 (Overview 

and Methodologies) for an introduction to random fields. 

A collection of random fields corresponds to from 1 to 𝑛 independent (uncorrelated) random fields, each 

random field defined over the entire product.  Each random field represents geolocation errors via a set 

of predictive statistics. 

A collection of partitions corresponds to from 1 to 𝑞 paritions.  Each geolocation in the product is 

associated with one and only one partition.   Each partition also has an a priori probability of occurrence 

that specifies the approximate probability that an arbitrary geolocation in the product corresponds to that 

particular partition. 

In addition, each partition corresponds to a subset of the random fields within the collection of random 

fields, as specified by a Random Field-to-Partition Mapping: partition 𝑚 corresponds to random fields 𝑚𝑘, 
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𝑘 = 1, . . 𝑞𝑚, where 𝑞𝑚 ≤ 𝑛.  The geolocations associated with partition 𝑚 contain errors corresponding 

to a sum of 𝑞𝑚 independent (uncorrelated) errors, one from each of the specified random fields 𝑚𝑘. 

The recommended (baseline) Random Field-to-Partition Mapping for the representation of predicted 

accuracy for a geolocation product is detailed as follows and graphically summarized in Figure E.2-1: 

 Geolocation errors corresponding to geolocations associated with the first partition, 𝑃𝑎𝑟𝑡1, solely 

correspond to the first random field, 𝑅𝐹1; 

 Geolocation errors corresponding to geolocations associated with the second partition, 𝑃𝑎𝑟𝑡2, 

correspond to random fields 𝑅𝐹1 and 𝑅𝐹2; 

 … 

 Geolocation errors corresponding to geolocations in 𝑃𝑎𝑟𝑡𝑛 correspond to 𝑅𝐹1 and 𝑅𝐹𝑛. 

 

 Note that the number of partitions 𝑞 is equal to the number of random fields 𝑛, i.e., 𝑞 = 𝑛, in the 

baseline approach. 

Figure E.2-1: The Baseline Random Field-to-Partition Mapping assuming three partitions 

In particular, all geolocations in the MGRF contain errors characterized by 𝑅𝐹1.  Geolocations associated 

with 𝑃𝑎𝑟𝑡1 contain errors that are solely characterized by 𝑅𝐹1.  Geolocations associated with partition 

𝑃𝑎𝑟𝑡𝑚, 1 < 𝑚 ≤ 𝑛, contain the sum of two uncorrelated geolocation errors, one characterized by 𝑅𝐹1 

and the other characterized by 𝑅𝐹𝑚.  Random Field 𝑅𝐹1 corresponds to “product-wide” systematic errors.  

The other random fields contain “additive errors”, usually associated with problem areas in the product’s 

generation. 
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Partition 𝑃𝑎𝑟𝑡1 is defined to consist of all geolocations not associated with any of the other partitions and 

is termed the “nominal partition”.  Typically, most geolocations in the product are associated with the 

nominal partition.    

The MGRF predictive statistics include the approximate a priori probabilities that an arbitrary geolocation 

in the product realization is contained in each of the 𝑛 partitions, i.e., there are 𝑛 probabilities that sum 

to 1. However, the corresponding partition for a specific geolocation in a product realization is typically 

discernable (known) by the “down-stream” user of the product based on the partition’s description and 

visualization of the product by the user or possibly by an automated/automatic process.  

The relationship of the random fields and the partitions and their various predictive statistics are 

documented in the remainder of this section and its corresponding subsections.   

One possible variation to the baseline Random Field-to-Partition Mapping is termed “baseline mapping 

variation 1” and includes a new random field that is associated with partition 1 only, i.e., partition 1 

contains its usual random field plus one more random field.  The new random field corresponds to the 

geolocation product equivalent to sensor-mensuration (aka “unmodeled”) error.  It corresponds to 

product-wide errors that are “high frequency” and not as systematic (spatially correlated) as the errors in 

random field 1.   

The baseline approach assumes that sensor-mensuration error is either: (1) not applicable, (2) not 

separable/identifiable in the corresponding sample-statistics used to generate or “tune” the predictive 

statistics, or (3) its predictive statistics were already combined with the predictive statistics for random 

field 1.  See Section C.3 for a general methodology for the latter as applied to image errors and its 

subsequent effects on predicted accuracy.  The baseline Random Field-to-Partition Mapping is assumed 

applicable for the remainder of this appendix. 

In summary, a specific geolocation 𝑋 in the product is associated with a unique partition 𝑚 and its 

corresponding random fields.  This is clarified in the following sections, and in particular, by the example 

contained in Section E.4.   

An interim top-level example that excludes details of relevant predictive statistics is as follows: A product 

instance contains a total of 4 × 106  geolocations associated with 2 partitions, Partition 1 with 3.5 × 106 

corresponding geolocations and Partition 2 with the other 0.5 × 106 geolocations.  The product not only 

consists of all 4 × 106 3d geolocations, but also metadata or its equivalent that includes the a priori 

statistics that define the Mixed Gaussian Random Field that represents the corresponding 3d geolocation 

errors (predicted accuracy) of all geolocations in an efficient and compact manner.  Of course, the actual 

errors in the product are unknown; otherwise, the 3d geolocations would be pre-corrected.  

In the example presented in Section E.4, Partition 2 is associated with geolocations with poor accuracy 

corresponding to “melted” roof-top edges in an EO-derived 3d Point Cloud, while Partition 1 is associated 

with all other geolocations in the 3d Point Cloud with corresponding good accuracy. 
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The use of partitions in the MGRF allows for flexibility, and prohibits any “mask-over” or obfuscation of 

the effects of large errors associated with low-probability partitions on an arbitrary geolocation in the 

product (specific partition unknown), as described in the Section E.2.3.  However, as detailed in Section 

E.2.2, if a geolocation is known to be associated with partition 𝑚, corresponding statistics provide for a 

higher-fidelity representation of the geolocation’s predicted accuracy.  In addition, and as detailed later 

in this appendix, a partition does not necessarily correspond to a connected region of geolocations.   An 

example is “melted roof-top” edges that correspond to features (buildings) geographically dispersed 

across the product.  

Finally, although the various definitions and derivations presented in following (sub)sections of Section 

E.2 may appear numerous and somewhat complicated, respectively, the subsequent MGRF predictive 

statistics that are included in the product’s metadata or its equivalent are not, and their use by the “down-

stream” user straight-forward.  The inclusion of pre-computed scalar accuracy metrics (CEXX and LEXX) 

for both horizontal and vertical predicted accuracies and for predicted relative accuracies at various 

probability levels (XX) also facilitates “down-stream” use.  

E.2.1 Geolocation errors represented by random fields  

The predictive statistics defined in this section define wide-sense homogeneous random fields. More 

specifically, the predictive statistics characterize a multivariate, Gaussian distributed, geolocation error 

𝜖𝑋 that is represented by or “contained in” a Random Field 𝑅𝐹𝑖, 𝑖 = 1, . . , 𝑛, and which also corresponds 

to geolocation 𝑋.   

The predictive statistics also characterize the relative error 𝑟𝑒𝑙_𝜖𝑋 = 𝜖𝑋1 − 𝜖𝑋2, where 𝜖𝑋1 is contained 

in 𝑅𝐹𝑖 and corresponds to geolocation 𝑋1, and 𝜖𝑋2 is contained in 𝑅𝐹𝑗 and corresponds to geolocation 𝑋2.   

This characterization is further categorized by whether the two random fields are one in the same (𝑖 = 𝑗) 

or not (𝑖 ≠ 𝑗).   

The above random fields are termed “wide-sense homogeneous” and are similar to a “stationary 

stochastic process”, since the error statistics are independent of the actual geolocation 𝑋, and are only a 

function of ∆𝑋 between two geolocations for the relative error statistics. 

Errors contained in different random fields are independent (uncorrelated) by definition. 

Random Field 𝑹𝑭𝒊 – defining statistics 

The following predictive statistics completely define the random field 𝑅𝐹𝑖: 

�̅�𝑅𝐹 𝑖 ≡ 𝐸{𝜖𝑋} : the mean-value of error; a 𝑘 × 1 vector;                (E.2.1-1) 

 

𝐶𝑋𝑅𝐹 𝑖
≡ 𝐸{(𝜖𝑋 − �̅�𝑅𝐹 𝑖)(𝜖𝑋 − �̅�𝑅𝐹 𝑖)

𝑇} : the covariance matrix about the mean-value,             (E.2.1-2) 

a 𝑘 × 𝑘 matrix, assumed a valid (symmetric and positive definite) covariance matrix;                

 

𝑠𝑝𝑑𝑐𝑓𝑅𝐹 𝑖(∆𝑋) : a strictly positive definite correlation function,                       (E.2.1-3)  



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

206 

a 𝑘 × 1 vector-valued function, a function of the difference ∆𝑋 between two  

geolocations.  The particular spdcf is arbitrary, but typically a member of the “CSM four parameter” family. 

  

The evaluation of 𝑠𝑝𝑑𝑐𝑓𝑅𝐹 𝑖(∆𝑋) corresponds to the value of the spatial correlation  

coefficient for each component of error – defined in more detail later in this section. 

 

Random Field 𝑹𝑭𝒊 – derived statistics 

The above mean-value and covariance matrix completely characterize the multi-variate probability 

density function and multi-variate cumulative probability distribution function of the geolocation error 

𝜖𝑋 contained in 𝑅𝐹𝑖 since the errors are assumed Gaussian distributed: 

𝑝𝑑𝑓𝑅𝐹 𝑖(𝜖𝑋) and 𝑐𝑑𝑓𝑅𝐹 𝑖(𝜖𝑋).                               (E.2.1-4)  

Both of the above functions are scalar-valued and correspond to the value of probability density and of 

probability, respectively. 

Random Fields 𝑹𝑭𝒊 and 𝑹𝑭𝒋 – derived statistics 

Cross-covariance matrix: 

𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖𝑗
≡ 𝐸{(𝜖𝑋1 − �̅�𝑅𝐹 𝑖)(𝜖𝑋2 − �̅�𝑅𝐹 𝑗)

𝑇
}: the cross-covariance matrix of geolocation      (E.2.1-5) 

errors 𝜖𝑋1 and 𝜖𝑋2 contained in Random Fields 𝑅𝐹𝑖 and 𝑅𝐹𝑗, respectively, about their  

mean-values of error; a 𝑘 × 𝑘 matrix computed as follows:  

 

𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖𝑗
= 𝐶𝑋𝑅𝐹 𝑖

1/2 (𝑆𝑖𝑗(∆𝑋))𝐶𝑋𝑅𝐹 𝑗

1/2,                   (E.2.1-6) 

where the superscript ½ corresponds to principal matrix square-root, and the spdcf 𝑘 × 𝑘 diagonal 

matrix 𝑆𝑖𝑗 is defined as follows: 

 

𝑆𝑖𝑗(∆𝑋) = 0𝑘×𝑘 if 𝑖 ≠ 𝑗, and                             (E.2.1-7) 

 

𝑆𝑖𝑗(∆𝑋) = [
𝑠𝑝𝑑𝑐𝑓𝑅𝐹 𝑖 1(∆𝑋) 0 . .

. . . . . .
0 . . 𝑠𝑝𝑑𝑐𝑓𝑅𝐹 𝑖 𝑘(∆𝑋))

], if 𝑖 = 𝑗,  

where 𝑠𝑝𝑑𝑐𝑓𝑅𝐹 𝑖 𝑚(∆𝑋12), 𝑚 = 1, . . , 𝑘, corresponds to component 𝑚 of the vector-valued function 

𝑠𝑝𝑑𝑐𝑓𝑅𝐹 𝑖(∆𝑋), and ∆𝑋 = 𝑋1 − 𝑋2. 

If either 𝐶𝑋𝑅𝐹 𝑖
 is a diagonal matrix or if the 𝑘 components of 𝑠𝑝𝑑𝑐𝑓𝑅𝐹 𝑖(∆𝑋) are identically defined, 

𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖𝑖
= 𝑆𝑖𝑖(∆𝑋)𝐶𝑋𝑅𝐹 𝑖

. 

Equation (E.2.1-6) is very general and is derived in reference [3]. 
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Note that when the two random fields are different (𝑖 ≠ 𝑗) the cross covariance between the two errors 

𝜖𝑋1 and 𝜖𝑋2 that are contained in the random fields is equal to zero (0𝑘×𝑘), i.e., they are uncorrelated. 

Relative error: 

The relative error 𝑟𝑒𝑙_𝜖𝑋 is defined as 𝑟𝑒𝑙_𝜖𝑋 ≡ (𝜖𝑋1 − 𝜖𝑋2), with the two errors 𝜖𝑋1 and 𝜖𝑋2 

corresponding to 𝑅𝐹𝑖 and 𝑅𝐹𝑗, respectively, and also to geolocations 𝑋1 and 𝑋2, respectively.        

 

The following define and compute the predictive statistics corresponding to relative error:    

𝑟𝑒𝑙_�̅�𝑅𝐹 𝑖𝑗 ≡ 𝐸{𝑟𝑒𝑙_𝜖𝑋}: the mean-value of relative error; a 𝑘 × 1 vector                             (E.2.1-8) 

and computed as follows:                

 

𝑟𝑒𝑙_�̅�𝑅𝐹 𝑖𝑗 = 𝐸{𝜖𝑋1 − 𝜖𝑋2} = 𝐸{𝜖𝑋1} − 𝐸{𝜖𝑋2} = �̅�𝑅𝐹 𝑖 − �̅�𝑅𝐹 𝑗.                (E.2.1-9)  

 

𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑖𝑗
≡ 𝐸{(𝑟𝑒𝑙_𝜖𝑋 − 𝑟𝑒𝑙_�̅�𝑅𝐹 𝑖𝑗)(𝑟𝑒𝑙_𝜖𝑋 − 𝑟𝑒𝑙_�̅�𝑅𝐹 𝑖𝑗)

𝑇
}: the relative error                         (E.2.1-10) 

error covariance matrix; a 𝑘 × 𝑘 matrix computed as follows:   

 

𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑖𝑗
= 𝐸 {((𝜖𝑋1 − �̅�𝑅𝐹 𝑖) − (𝜖𝑋2 − �̅�𝑅𝐹 𝑗)) ((𝜖𝑋1 − �̅�𝑅𝐹 𝑖) − (𝜖𝑋2 − �̅�𝑅𝐹 𝑗))

𝑇
} =            (E.2.1-11) 

𝐶𝑋𝑅𝐹 𝑖
+ 𝐶𝑋𝑅𝐹 𝑗

− 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖𝑗
− 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑗𝑖

, and therefore: 

 

𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑖𝑗
= 𝐶𝑋𝑅𝐹 𝑖

+ 𝐶𝑋𝑅𝐹 𝑗
, if 𝑖 ≠ 𝑗;, and                 (E.2.1-12) 

𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑖𝑗
= 2(𝐶𝑋𝑅𝐹 𝑖

 − 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖𝑖
), if 𝑖 = 𝑗. 

 

For convenience of notation when the two random fields are the same (𝒊 = 𝒋): 

The following definitions correspond to simplifications in notation applicable when 𝑖 = 𝑗, i.e., when the 

two errors are contained in the same random field 𝑅𝐹𝑖: 

𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖
≡ 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖𝑖

    (see Equation (E.2.1-6)             (E.2.1-13) 

𝑟𝑒𝑙_�̅�𝑅𝐹 𝑖 ≡ 𝑟𝑒𝑙_�̅�𝑅𝐹 𝑖𝑖 = 0𝑘×1,     (see Equation (E.2.1-9)               (E.2.1-14) 

𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑖
≡ 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑖𝑖

= 2(𝐶𝑋𝑅𝐹 𝑖
 − 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖

),    (see Equation E.2.1-12).                           (E.2.1-15) 

 

In addition, the above mean-value 𝑟𝑒𝑙_�̅�𝑅𝐹 𝑖 and covariance matrix 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑖
 completely characterize the 

multivariate Gaussian 𝑝𝑑𝑓 and 𝑐𝑑𝑓 for the relative error 𝑟𝑒𝑙 𝜖𝑋 corresponding to two errors in the same 

Random Field 𝑅𝐹𝑖 since relative error is the sum (difference) between two Gaussian distributed errors: 

𝑟𝑒𝑙_𝑝𝑑𝑓𝑅𝐹 𝑖(𝑟𝑒𝑙_𝜖𝑋) and 𝑟𝑒𝑙_𝑐𝑑𝑓𝑅𝐹 𝑖(𝑟𝑒𝑙_𝜖𝑋).                  (E.2.1-16) 
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Further note that, although 𝑟𝑒𝑙_�̅�𝑅𝐹 𝑖, 𝑟𝑒𝑙_𝑝𝑑𝑓𝑅𝐹 𝑖(𝑟𝑒𝑙_𝜖𝑋), and 𝑟𝑒𝑙 _𝑐𝑑𝑓𝑅𝐹 𝑖(𝑟𝑒𝑙_𝜖𝑋) are indexed by the 

corresponding random field 𝑅𝐹𝑖 which contains the two geolocation errors that make-up the relative 

error, they are also functions of the errors’ corresponding geolocations 𝑋1 and 𝑋2, or more specifically, 

their difference ∆𝑋.   

Multiple geolocation errors: 

In addition, the same principles used above can be used to compute a multi-geolocation mean-value 

“𝑚𝑢𝑙𝑡𝑖_�̅�𝑅𝐹 𝑖” and a full covariance matrix about the mean-value “𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑅𝐹 𝑖
” for 𝑙 geolocation errors 

associated with Random Field 𝑅𝐹𝑖 instead of a single geolocation error as is applicable for �̅�𝑅𝐹 𝑖 and 𝐶𝑋𝑅𝐹 𝑖
 

defined in Equations (E.2.1-1) and (E.2.1-2), respectively. 

𝑚𝑢𝑙𝑡𝑖_�̅�𝑅𝐹 𝑖  is a 𝑙𝑘 × 1 vector and 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑅𝐹 𝑖
 is a 𝑙𝑘 × 𝑙𝑘 matrix.  The latter’s computation relies on 

𝑠𝑝𝑑𝑐𝑓𝑅𝐹 𝑖(∆𝑋) in order to specify the spatial correlation between the geolocation errors corresponding 

to each pair of the 𝑙 geolocations and is used to compute their corresponding cross-covariance matrix.  

For example, assuming that there are three geolocations (𝑙 = 3) of interest: 

𝑚𝑢𝑙𝑡𝑖_�̅�𝑅𝐹 𝑖 = [�̅�𝑅𝐹 𝑖
𝑇

�̅�𝑅𝐹 𝑖
𝑇

�̅�𝑅𝐹 𝑖
𝑇]

𝑇
;                (E.2.1-17) 

𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑅𝐹 𝑖
= 

 𝐶𝑋𝑅𝐹 𝑖
𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖

(∆𝑋12) 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖
(∆𝑋13)

. 𝐶𝑋𝑅𝐹 𝑖
 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖

(∆𝑋23)

. .  𝐶𝑋𝑅𝐹 𝑖

,                    (E.2.1-18) 

and where, for example, ∆𝑋13 = 𝑋1 − 𝑋3 is the difference between the geolocations 1 and 3.   

The above equations are also easily generalized to 𝑙 geolocation errors associated with arbitrary random 

fields:  If an error 𝜖𝑋𝑚 is associated with 𝑅𝐹𝑚∗, where 1 ≤ 𝑚 ≤ 𝑙 and where 1 ≤ 𝑚 ∗≤ 𝑛, the 

corresponding mean-value entry in Equation (E.2.1-17) is equal to �̅�𝑅𝐹 𝑚∗
𝑇

 and the corresponding 

diagonal entry in Equation (E.2.1-18) is equal to 𝐶𝑋𝑅𝐹 𝑚∗
.  A corresponding cross-covariance entry in 

Equation (E.2.1-18) is equal to zero if the other geolocation error is not in 𝑅𝐹𝑚∗, otherwise it is equal to 

𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑚∗
(∆𝑋), where (∆𝑋) is the appropriate difference between geolocation 𝑚 and the other 

geolocation. 

Random Fields - miscellaneous 

The spdcf: 

The spdcf, or degree of spatial correlation, has a large impact on predicted relative accuracy for two 

geolocation errors corresponding to the same random field. The higher the (positive) correlation, the 

smaller the relative error covariance matrix 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑖
 due to the statistical cancellation of similar errors.  

The spdcf has similar effects on the multi-geolocations error covariance matrix 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑅𝐹 𝑖
. 

Figure E.2.1-1 presents two examples of an spdcf corresponding to the vertical component (z) of error  

versus horizontal “distance”, or more specifically, dx in the x-direction and dy in the y-direction between 
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two corresponding geolocations.  More specifically, and consistent with the definitions and notation 

presented in this section, the strictly positive definite correlation function is designated as 

𝑠𝑝𝑑𝑐𝑓𝑅𝐹 𝑖 3(∆𝑋12)  , which corresponds to the third (vertical) component of error in a random field 𝑅𝐹𝑖 

and to two geolocations 𝑋1 and 𝑋2, with ∆𝑋12 equal to their difference.  See TGD 1 (Overview and 

Methodologies) and TGD 2a (Predictive statistics) for further details regarding spdcf, as there are various 

spdcf families for flexibility.  Proper use of an spdcf, as detailed in this document, ensures the construction 

of valid covariance matrices. 

 

Figure E.2.1-1: Correlation (unit-less) verses 2d horizontal distance (meters) – two spdcf examples: 

exponential decay (isotropic) and separable exponential decay (anisotropic) as a function of horizontal 

distance between 3d geolocations 

Consequences of a possible direct Random Field-to-Partition Assignment: 

An MGRF contains both partitions and random fields.  In particular, each partition is made-up of, or is 

assigned to, one or more random fields as discussed earlier in Section E.2 and in the next Section E.2.2.   

More specifically, each geolocation in the product is associated with a unique partition, and the 

geolocation’s error is the sum of independent errors, each error from a different random field assigned 

to the partition.  If only one random field is assigned to a partition, the geolocation error consists solely 

of an error from that random field, i.e., is statistically characterized completely by the random field. 

A direct “Random Field-to-Partition Mapping” assigns Random Field 𝑖 exclusively to Partition 𝑖, assuming 

that there are the same number of random fields as there are partitions in the MGRF.  If a direct 

assignment were applicable, all defining and derived statistics presented in this section for random fields 

would be directly applicable (one-in-the-same) for partitions.  However, as described in the next section 

and discussed earlier in Section E.2, the baseline assignment for an MGRF is not direct.  That is, a direct 
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Random-Field-to-Partition Mapping is not the recommended (baseline) Random-Field-to-Partition 

Mapping for an MGRF-based representation of predicted accuracy for a geolocation product. 

Scalar accuracy metrics: 

Scalar accuracy metrics, such as CEXX, LEXX, rel_CEXX, and rel_LEXX, for various probability levels XX are 

also derived statistics of interest and their definitions and computations are presented in Section E.2.5, 

but correspond to partitions instead of random fields per se.   However, if Partition 𝑖 is made-up of 

geolocations with corresponding errors exclusively from Random Field 𝑗, the scalar accuracy metrics 

computed for Partition 𝑖 per Section E.2.5 would be directly applicable to Random Field 𝑗 as well. 

E.2.2 Statistics corresponding to geolocations and their errors contained in partitions 

As discussed earlier, an MGRF used to characterize the predicted accuracy of a geolocation product is 

defined as containing from 1 to 𝑛 partitions: 𝑃𝑎𝑟𝑡𝑚, 𝑚 = 1, . . , 𝑛.  Each geolocation in the product 

corresponds to one and only one partition.  

In addition, as discussed earlier and further detailed below, each partition corresponds to a specified set 

of one or more random fields in order to statistically represent geolocation errors.  Each partition also 

corresponds to a specified description of the geolocations in the product to which it applies, e.g. 

geolocations corresponding to “melted roof-top edges”.    

For this recommended application of MGRF, the baseline Random Field-to-Partition Mapping is assumed 

applicable.  As such, Partition 1 contains Random Field 1 only and is applicable to all geolocations in the 

product that are not associated with any other partitions.  The other partitions contain Random Field 1 

and one other unique random field.  The latter is considered to contain “additive” errors relative to the 

former.  More detailed examples of partitions, the random fields that they contain as well as the 

geolocations that they are applicable to, are presented later in this appendix.  In particular, Section E.5 

describes/tabulates all parameters that define the relevant partitions in corresponding product metadata 

or its equivalent. 

The remainder of this section describes the predictive statistics that correspond to one or more partitions.  

These predictive statistics are directly related to the predictive statistics of their corresponding random 

fields.  The predictive statistics for partitions that are presented below do not include a partition’s 

definition in terms of relevant geolocations, but does include the partition’s a priori probability of 

occurrence, i.e., the probability that an arbitrary geolocation in the product is associated with the 

partition.   

Partition 𝑷𝒂𝒓𝒕𝒎 – predictive statistics 

The error 𝜖𝑋 in a geolocation 𝑋 corresponding to Partition 𝑃𝑎𝑟𝑡1 is contained in the Random Field 𝑅𝐹1.  

The error 𝜖𝑋 in a geolocation 𝑋 corresponding to 𝑃𝑎𝑟𝑡𝑚, 1 < 𝑚 ≤ 𝑛, is the sum of two independent 

(uncorrelated) errors, one contained in the Random Field 𝑅𝐹1 and the other contained in the Random 

Field 𝑅𝐹𝑚.  Let us term these two independent errors 𝜖𝑋𝑅𝐹 1 and 𝜖𝑋𝑅𝐹 𝑚, respectively, in the derivations 

below: 
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The a priori or predictive statistics of geolocation error 𝜖𝑋 = (𝜖𝑋𝑅𝐹 1 + 𝜖𝑋𝑅𝐹 𝑚) corresponding to a 

geolocation in 𝑃𝑎𝑟𝑡𝑚 are as follows and based on the above definitions and the definitions for a random 

field presented in Section E.2.1: 

�̅�𝑃𝑎𝑟𝑡 𝑚 ≡ 𝐸{𝜖𝑋} = 𝐸{𝜖𝑋𝑅𝐹 1 + 𝜖𝑋𝑅𝐹 𝑚} ≡ �̅�𝑅𝐹 1 + �̅�𝑅𝐹 𝑚, the 𝑘 × 1 mean-value of error;          (E.2.2-1)  

𝐶𝑋𝑃𝑎𝑟𝑡 𝑚
≡ 𝐸{(𝜖𝑋 − �̅�𝑃𝑎𝑟𝑡 𝑚)(𝜖𝑋 − �̅�𝑃𝑎𝑟𝑡 𝑚)𝑇} =                                                               (E.2.2-2) 

𝐸 {((𝜖𝑋𝑅𝐹 1 − �̅�𝑅𝐹 1) + (𝜖𝑋𝑅𝐹 𝑚 − �̅�𝑅𝐹 𝑚))((𝜖𝑋𝑅𝐹 1 − �̅�𝑅𝐹 1) + (𝜖𝑋𝑅𝐹 𝑚 − �̅�𝑅𝐹 𝑚))
𝑇
} = 

𝐶𝑋𝑅𝐹 1
+ 0 + 0 + 𝐶𝑋𝑅𝐹 𝑚

= 𝐶𝑋𝑅𝐹 1
+ 𝐶𝑋𝑅𝐹 𝑚

 , 

a 𝑘 × 𝑘 covariance matrix.  

The above equations and similar equations in the remainder of this section are also applicable to errors 

in geolocations corresponding to 𝑃𝑎𝑟𝑡1 – simply remove references to Random Field 𝑅𝐹𝑚 in the 

corresponding equations.  For example, remove �̅�𝑅𝐹 𝑚 from Equation (E.2.2-1), i.e., �̅�𝑃𝑎𝑟𝑡 1 = �̅�𝑅𝐹 1. 

In addition, the mean-value and covariance matrix defined in Equations (E.2.2-1) and (E.2.2-2), 

respectively, completely characterize the multi-variate probability density function and multi-variate 

cumulative probability distribution function of the geolocation error 𝜖𝑋 since it is Gaussian distributed 

due to the fact that it is the sum of two Gaussian distributed errors: 

𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑚(𝜖𝑋) and 𝑐𝑑𝑓𝑃𝑎𝑟𝑡 𝑚(𝜖𝑋).                             (E.2.2-3)  

Relative error: 

Similarly, the statistics for the relative error 𝑟𝑒𝑙 𝜖𝑋 between two geolocations 𝑋1 and 𝑋2 in 𝑃𝑎𝑟𝑡𝑚 are 

derived below based on the following definitions: 

𝑟𝑒𝑙_𝜖𝑋 = 𝜖𝑋1 − 𝜖𝑋2, where                     (E.2.2-4) 

𝜖𝑋1 = 𝜖𝑋1 𝑅𝐹 1 + 𝜖𝑋1 𝑅𝐹 𝑚  and 𝜖𝑋2 = 𝜖𝑋2 𝑅𝐹 1 + 𝜖𝑋2 𝑅𝐹 𝑚.                (E.2.2-5) 

 

𝜖𝑋1 𝑅𝐹 1 and 𝜖𝑋2 𝑅𝐹 1 are correlated since they belong to the same Random Field 1, and 𝜖𝑋1 𝑅𝐹 𝑚 and 

𝜖𝑋2 𝑅𝐹 𝑚 are also correlated because they belong to the same Random Field  𝑚.  Therefore: 

𝑟𝑒𝑙_�̅�𝑃𝑎𝑟𝑡 𝑚 ≡ 𝐸{𝑟𝑒𝑙_𝜖𝑋} = 𝐸{ (𝜖𝑋1 − 𝜖𝑋2)} = �̅�𝑃𝑎𝑟𝑡 𝑚 − �̅�𝑃𝑎𝑟𝑡 𝑚 = 0;              (E.2.2-6)  

𝑟𝑒𝑙_𝐶𝑋𝑃𝑎𝑟𝑡 𝑚
≡ 𝐸{(𝑟𝑒𝑙_𝜖𝑋 − 𝑟𝑒𝑙_�̅�𝑃𝑎𝑟𝑡 𝑚)(𝑟𝑒𝑙_𝜖𝑋 − 𝑟𝑒𝑙_�̅�𝑃𝑎𝑟𝑡 𝑚)𝑇)} =               (E.2.2-7) 

𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 1
+ 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑚

. 

Equation (E.2.2-7) is based on: 
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𝑟𝑒𝑙_𝜖𝑋 = 𝜖𝑋1−𝜖𝑋2 = (𝜖𝑋1 𝑅𝐹 1 + 𝜖𝑋1 𝑅𝐹 𝑚) − (𝜖𝑋2 𝑅𝐹 1 + 𝜖𝑋2 𝑅𝐹 𝑚) =                            (E.2.2-8) 

(𝜖𝑋1 𝑅𝐹 1 − 𝜖𝑋2 𝑅𝐹 1) + (𝜖𝑋1 𝑅𝐹 𝑚 − 𝜖𝑋2 𝑅𝐹 𝑚) , and correspondingly, 

𝑟𝑒𝑙_𝐶𝑋𝑃𝑎𝑟𝑡 𝑚
= 𝐸{(𝑟𝑒𝑙_𝜖𝑋)(𝑟𝑒𝑙_𝜖𝑋)𝑇} =   

𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 1
− 𝐸{(𝜖𝑋1 𝑅𝐹 1 − 𝜖𝑋2 𝑅𝐹 1)(𝜖𝑋1 𝑅𝐹 𝑚 − 𝜖𝑋2 𝑅𝐹 𝑚)𝑇        

−𝐸{(𝜖𝑋1 𝑅𝐹 𝑚 − 𝜖𝑋2 𝑅𝐹 𝑚)(𝜖𝑋1 𝑅𝐹 1 − 𝜖𝑋2 𝑅𝐹 1)
𝑇 + 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑚

= 

𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 1
− 0 − 0 + 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑚

= 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 1
+ 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑚

.          

 

The above mean-value and error covariance matrix completely define or characterize the probability 

distribution function (𝑝𝑑𝑓) for relative error since relative error is Gaussian distributed - the sum (or 

difference) of two Gaussian distributed random variables: 𝜖𝑋1 and 𝜖𝑋2; or equivalently, four Gaussian 

distributed random variables: 𝜖𝑋1 𝑅𝐹 1, 𝜖𝑋2 𝑅𝐹 1, 𝜖𝑋1 𝑅𝐹 𝑚, and 𝜖𝑋2 𝑅𝐹 𝑚.  The integral of the 𝑝𝑑𝑓 is the 

𝑐𝑑𝑓.  The 𝑝𝑑𝑓 and the 𝑐𝑑𝑓 for relative error are designated as follows: 

 

𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑚(𝑟𝑒𝑙_𝜖𝑋) and 𝑟𝑒𝑙_𝑐𝑑𝑓𝑃𝑎𝑟𝑡 𝑚(𝑟𝑒𝑙_𝜖𝑋)                 (E.2.2-9) 

 

If we are interested in the relative error statistics for geolocations associated with 𝑃𝑎𝑟𝑡1, they are 

simply equal to: 𝑟𝑒𝑙_�̅�𝑃𝑎𝑟𝑡 1 = 0 , 𝑟𝑒𝑙_𝐶𝑋𝑃𝑎𝑟𝑡 1
= 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 1

, and 𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 1(𝑟𝑒𝑙_𝜖𝑋) defined 

accordingly from the two preceding statistics. 

Multiple geolocation errors: 

In addition, based on a derivation similar to the above as well as the definitions and derivations of Section 

E.2.1 for random fields, the multi-geolocation mean-value of error and the covariance matrix about the 

mean-value for 𝑞 geolocations in 𝑃𝑎𝑟𝑡𝑚 are as follows:       

𝑚𝑢𝑙𝑡𝑖_�̅�𝑃𝑎𝑟𝑡 𝑚 = [�̅�𝑃𝑎𝑟𝑡 𝑚
𝑇

�̅�𝑃𝑎𝑟𝑡 𝑚
𝑇

�̅�𝑃𝑎𝑟𝑡 𝑚
𝑇]

𝑇
;                     (E.2.2-10)   

𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑃𝑎𝑟𝑡 𝑚
= 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑅𝐹 1

+ 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑅𝐹 𝑚
,                            (E.2.2-11) 

 

where �̅�𝑃𝑎𝑟𝑡 𝑚 is defined in Equation (E.2.2-1) and 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑅𝐹 1
 and 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑅𝐹 𝑚

 are defined in  

Equation (E.2.1-18).  𝑚𝑢𝑙𝑡𝑖_�̅�𝑃𝑎𝑟𝑡 𝑚 is a 𝑞𝑘 × 1 vector and 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑃𝑎𝑟𝑡 𝑚
 a 𝑞𝑘 × 𝑞𝑘 matrix. 

 

If we are interested in the statistics for geolocations associated with 𝑃𝑎𝑟𝑡1, they are simply equal to: 

𝑚𝑢𝑙𝑡𝑖_�̅�𝑃𝑎𝑟𝑡 1 = 𝑚𝑢𝑙𝑡𝑖_�̅�𝑅𝐹 1 and 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑃𝑎𝑟𝑡 1
= 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑅𝐹 1

. 

Partitions 𝑷𝒂𝒓𝒕𝒎 and 𝑷𝒂𝒓𝒕𝒒– predictive statistics 

Define 𝜖𝑋1 as the error in a geolocation associated with 𝑃𝑎𝑟𝑡𝑚, and similarly, 𝜖𝑋2 as the error in a 

geolocation associated with 𝑃𝑎𝑟𝑡𝑞.  Furthermore, decompose these errors as the sum of independent 

errors associated with corresponding random fields:  𝜖𝑋1 ≡ 𝑋1 𝑅𝐹 1 + 𝜖𝑋1 𝑅𝐹 𝑚 and 𝜖𝑋2 ≡ 𝜖𝑋2 𝑅𝐹 1 +

𝜖𝑋2 𝑅𝐹 𝑞, assuming that 𝑚 ≠ 1 and 𝑞 ≠ 1. 
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Cross-covariance matrix: 

𝑐𝑟𝑜𝑠𝑠_𝐶𝑋 𝑃𝑎𝑟𝑡 𝑚𝑞
 ≡ 𝐸{(𝜖𝑋1 − �̅�𝑃𝑎𝑟𝑡 𝑚)(𝜖𝑋2 − �̅�𝑃𝑎𝑟𝑡 𝑞)

𝑇
=               (E.2.2-12) 

𝐸{((𝜖𝑋1 𝑅𝐹 1 − �̅�𝑅𝐹 1) + (𝜖𝑋1 𝑅𝐹𝑚 − �̅�𝑅𝐹 𝑚)) ((𝜖𝑋2 𝑅𝐹 1 − �̅�𝑅𝐹 1) + (𝜖𝑋2 𝑅𝐹𝑞 − �̅�𝑅𝐹 𝑞))
𝑇

= 

𝑐𝑟𝑜𝑠𝑠_𝐶𝑋 𝑅𝐹 1
+ 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋 𝑅𝐹 𝑚𝑞

, for all 𝑚 ≠ 1 and 𝑞 ≠ 1;  

otherwise, 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋 𝑃𝑎𝑟𝑡 11
≡ 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋 𝑃𝑎𝑟𝑡 1

= 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋 𝑅𝐹 1
. 

Relative error: 

𝑟𝑒𝑙_𝜖𝑋 ≡ 𝜖𝑋1 − 𝜖𝑋2 = (𝜖𝑋1 𝑅𝐹 1 + 𝜖𝑋1 𝑅𝐹 𝑚) − (𝜖𝑋2 𝑅𝐹 1 + 𝜖𝑋2 𝑅𝐹 𝑞). 

 

𝑟𝑒𝑙_�̅�𝑃𝑎𝑟𝑡 𝑚𝑞 = 𝐸{𝜖𝑋1 − 𝜖𝑋2} = �̅�𝑅𝐹 𝑚 − �̅�𝑅𝐹 𝑞;               (E.2.2-13) 

 

𝑟𝑒𝑙_𝐶𝑋𝑃𝑎𝑟𝑡 𝑚𝑞
= 𝐸 {(𝑟𝑒𝑙 𝜖𝑋 − 𝑟𝑒𝑙_�̅�𝑃𝑎𝑟𝑡 𝑚𝑞)(𝑟𝑒𝑙 𝜖𝑋 − 𝑟𝑒𝑙_�̅�𝑃𝑎𝑟𝑡 𝑚𝑞)

𝑇
)} =            (E.2.2-14) 

𝐸{((𝜖𝑋1 𝑅𝐹 1 − 𝜖𝑋2 𝑅𝐹 1) + (𝜖𝑋1 𝑅𝐹 𝑚 − �̅�𝑅𝐹 𝑚) − (𝜖𝑋2 𝑅𝐹 𝑞 − �̅�𝑅𝐹 𝑞))            

((𝜖𝑋1 𝑅𝐹 1 − 𝜖𝑋2 𝑅𝐹 1) + (𝜖𝑋1 𝑅𝐹 𝑚 − �̅�𝑅𝐹 𝑚) − (𝜖𝑋2 𝑅𝐹 𝑞 − �̅�𝑅𝐹 𝑞))
𝑇
} = 

𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 11
+ 𝐶𝑋𝑅𝐹 𝑚

+ 𝐶𝑋𝑅𝐹 𝑞
≡ 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 1

+ 𝐶𝑋𝑅𝐹 𝑚
+ 𝐶𝑋𝑅𝐹 𝑞

. 

If 𝑚 = 1, remove 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑚
 from the above equation; similarly, if 𝑞 = 1, remove 𝐶𝑋𝑅𝐹 𝑞

 from the above 

equation.  For example, if 𝑚 = 1 and 𝑞 > 1, 𝑟𝑒𝑙_�̅�𝑃𝑎𝑟𝑡 1𝑞 = 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 1
+ 𝐶𝑋𝑅𝐹 𝑞

. 

 

The above mean-value and error covariance matrix completely define the probability distribution function 

for the relative error since relative error is the sum (or difference) of two Gaussian distributed random 

variables: 𝜖𝑋1 and 𝜖𝑋2; or equivalently, four Gaussian distributed random variables: 𝜖𝑋1 𝑅𝐹 1, 𝜖𝑋2 𝑅𝐹 1 , 

𝜖𝑋1 𝑅𝐹 𝑚, and 𝜖𝑋2 𝑅𝐹 𝑞.  The 𝑝𝑑𝑓 is designated as follows: 

 

𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑚𝑞(𝑟𝑒𝑙_𝜖𝑋).                               (E.2.2-15) 

The corresponding 𝑐𝑑𝑓 is defined as the integral of the above and designated as: 

 𝑟𝑒𝑙_𝑐𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗                                   (E.2.2-16) 

E.2.3 Statistics corresponding to arbitrary geolocations and their errors in the MGRF 

We now extend the above to an arbitrary geolocation 𝑋 in the MGRF or product, i.e., the particular 

partition in which it resides is unknown.  We also extend the above to an arbitrary pair of geolocations 

𝑋1and 𝑋2 in the MGRF, i.e., the particular partitions in which they reside are unknown and may be 

different.   
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Correspondingly, the following also extends the concept of a multivariate Gaussian distribution to a 

multivariate Gaussian mixture distribution by taking into account that the geolocation(s) may be in any of 

the 𝑛 partitions consistent with the partitions’ specified a priori probabilities of occurrence. 

An arbitrary geolocation 𝑿 in the product 

𝑔𝑚𝑝𝑑𝑓(𝜖𝑋) ≡ ∑ 𝑝𝑖 𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖
𝑛
𝑖=1 (𝜖𝑋),                         (E.2.3-1)  

the Gaussian mixture probability density function for the random vector 𝜖𝑋, where 𝑝𝑖  and 𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖  are 

the probability of partition 𝑖’s occurrence and the probability density function of the corresponding 

geolocation error, respectively, associated with MGRF partition 𝑖. 

Note: 𝑝𝑖  utilizes the subscript 𝑖 for convenience instead of 𝑃𝑎𝑟𝑡𝑖 since there is no counterpart to 𝑝𝑖  for 

random fields. 

Simplifying notation, 𝑔𝑚𝑝𝑑𝑓(𝜖𝑋) can also be represented as 𝑔𝑚𝑝𝑑𝑓 = ∑ 𝑝𝑖 𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖
𝑛
𝑖=1 . The various 

 𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖 in Equation (E.2.3-1) are the Gaussian probability density functions for partitions 𝑖 (𝑃𝑎𝑟𝑡𝑖), 𝑖 =

1, . . , 𝑛, and defined in Equation (E.2.2-3).        

Corresponding mean-value of 𝜖𝑋:                  

�̅� ≡ 𝐸{𝜖𝑋} = ∭ 𝜖𝑋 𝑔𝑚𝑝𝑑𝑓(𝜖𝑋)
∞

−∞
𝑑𝜖𝑋 =                 (E.2.3-2)  

∭ 𝜖𝑋 𝑔𝑚𝑝𝑑𝑓(𝜖𝑋)
∞

−∞
𝑑𝜖𝑋 = ∭ 𝜖𝑋(∑ 𝑝𝑖  𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖(𝜖𝑋)𝑛

𝑖=1 )𝑑𝜖𝑋
∞

−∞
=  

∑ 𝑝𝑖(∭ 𝜖𝑋 𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖(𝜖𝑋)
∞

−∞
𝑛
𝑖=1 𝑑𝜖𝑋 = ∑ 𝑝𝑖 �̅�𝑃𝑎𝑟𝑡 𝑖

𝑛
𝑖=1     

The above equation can also be expressed in terms of the predictive statistics of            

the 𝑛 random fields: 

 

�̅� = ∑ 𝑝𝑖 �̅�𝑃𝑎𝑟𝑡 𝑖
𝑛
𝑖=1 = �̅�𝑅𝐹 1 + ∑ 𝑝𝑖 �̅�𝑅𝐹 𝑖

𝑛
𝑖=2  .                 (E.2.3-3) 

            

Corresponding error covariance matrix of 𝜖𝑋:                 

𝐶𝑋 ≡ 𝐸{(𝜖𝑋 − �̅�)(𝜖𝑋 − �̅�)𝑇} = ∭ (𝜖𝑋 − �̅�)(𝜖𝑋 − �̅�)𝑇𝑔𝑚𝑝𝑑𝑓(𝜖𝑋)
∞

−∞
𝑑𝜖𝑋 =              (E.2.3-4) 

∭ (𝜖𝑋 − �̅�)(𝜖𝑋 − �̅�)𝑇 ∑ 𝑝𝑖  𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖(𝜖𝑋))
𝑛

𝑖=1
𝑑𝜖𝑋

∞

−∞

= 

∑ 𝑝𝑖(∭  (𝜖𝑋 − �̅�)(𝜖𝑋 − �̅�)𝑇 𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖(𝜖𝑋)
∞

−∞
𝑛
𝑖=1 𝑑𝜖𝑋) =  

∑ 𝑝𝑖(∭  (𝜖𝑋𝜖𝑋𝑇 + �̅��̅�𝑇 − 𝜖𝑋�̅�𝑇 − �̅�𝜖𝑋𝑇)𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖(𝜖𝑋)
∞

−∞
𝑛
𝑖=1 𝑑𝜖𝑋) =  

∑ 𝑝𝑖((∭  (𝜖𝑋𝜖𝑋𝑇)𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖(𝜖𝑋)
∞

−∞
𝑛
𝑖=1 𝑑𝜖𝑋) + (�̅��̅�𝑇 − �̅�𝑃𝑎𝑟𝑡 𝑖�̅�

𝑇 − �̅��̅�𝑃𝑎𝑟𝑡 𝑖
𝑇
)) =  
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∑ 𝑝𝑖((
𝑛
𝑖=1 𝐶𝑋𝑃𝑎𝑟𝑡 𝑖

− �̅�𝑃𝑎𝑟𝑡 𝑖�̅�𝑃𝑎𝑟𝑡 𝑖
𝑇
) + (�̅��̅�𝑇 − �̅�𝑃𝑎𝑟𝑡 𝑖�̅�

𝑇 − �̅��̅�𝑃𝑎𝑟𝑡 𝑖
𝑇
)) =  

∑ 𝑝𝑖 ((�̅�𝑃𝑎𝑟𝑡 𝑖 − �̅�)(�̅�𝑃𝑎𝑟𝑡 𝑖 − �̅�)𝑇 + 𝐶𝑋𝑃𝑎𝑟𝑡 𝑖
)𝑛

𝑖=1 .        

The above equation can also be expressed solely in terms of the predictive statistics of   

the 𝑛 random fields, where �̅� is computed per Equation (E.2.3-3): 

 

𝐶𝑋 = ∑ 𝑝𝑖 ((�̅�𝑃𝑎𝑟𝑡 𝑖 − �̅�)(�̅�𝑃𝑎𝑟𝑡 𝑖 − �̅�)𝑇 + 𝐶𝑋𝑖
)𝑛

𝑖=1 =                 (E.2.3-5) 

𝑝1(�̅�𝑅𝐹 1 − �̅�)(�̅�𝑅𝐹 1 − �̅�)𝑇 + 𝑝1𝐶𝑋1
+  

∑ 𝑝𝑖 ((�̅�𝑅𝐹 1 + �̅�𝑅𝐹 𝑖 − �̅�)(�̅�𝑅𝐹 1 + �̅�𝑅𝐹 𝑖 − �̅�)𝑇 + 𝐶𝑋𝑅𝐹 𝑖
)𝑛

𝑖=2  . 

The above random vector 𝜖𝑋 is not Gaussian distributed (unless the number of partitions 𝑛 = 1).   That 

is, the Gaussian mixture probability density function 𝑔𝑚𝑝𝑑𝑓 for the random vector 𝜖𝑋 is the weighted 

sum of Gaussian 𝑝𝑑𝑓s, but 𝜖𝑋 itself is not the weighted sum of Gaussian distributed random vectors; 

hence, is not Gaussian distributed. 

𝑔𝑚𝑐𝑑𝑓 is the corresponding Gaussian mixture cumulative distribution function,                (E.2.3-6) 

i.e., the appropriate integral of 𝑔𝑚𝑝𝑑𝑓 that was defined in Equation (E.2.3-1).   

 

Note that “Gaussian mixture” is also termed “mixed Gaussian” or “mixture of Gaussians”. 

Example 1 of 𝒈𝒎𝒑𝒅𝒇 and corresponding 𝒈𝒎𝒄𝒅𝒇: 

Figure E.2.3-1 presents an example of the Gaussian mixture 𝑔𝑚𝑝𝑑𝑓 (black curve) for a 1d 𝜖𝑋 ≡ 𝜖𝑧.  It was 

generated corresponding to an MGRF consisting of 3 partitions, with corresponding statistics {𝑝𝑖, �̅�𝑃𝑎𝑟𝑡 𝑖, 

and 𝐶𝑋𝑃𝑎𝑟𝑡 𝑖
}: {.5, 0, 1}, {.1, -3, 4}, and {.4,1,16} for partition 𝑖 = 1,2,3, respectively.  The blue curve, green 

curve, and red curve in the figure correspond to the individual 𝑝𝑑𝑓𝑠 for partition 𝑖 = 1,2,3, respectively. 
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Figure E.2.3-1: The Gaussian mixture probability density function 𝑔𝑚𝑝𝑑𝑓 (black) corresponding to a 1d 

error 𝜖𝑧 corresponding to an arbitrary 3d geolocation 𝑋 = [𝑥 𝑦 𝑧]𝑇 in the MGRF (product), and its 

underlying Gaussian probability density functions  𝑝𝑑𝑓 for each partition; the plot is probability density 

(unit-less/meters) versus value of the error 𝜖𝑧 (meters) 

The Gaussian mixture 𝑔𝑚𝑝𝑑𝑓 (black curve) is the applicable probability density function for 𝜖𝑋 

corresponding to an arbitrary geolocation 𝑋 in the product.  If the geolocation was known to correspond 

to a particular partition, the corresponding 𝑝𝑑𝑓 for that partition would be applicable instead; for 

example, the green curve in the above figure if the geolocation was known to correspond to partition 2. 

Figure E.2.3-2 presents the Gaussian mixture 𝑔𝑚𝑐𝑑𝑓 (black curve) that corresponds to 𝑔𝑚𝑝𝑑𝑓 of Figure 

E.2.3-1, and includes the corresponding individual 𝑐𝑑𝑓𝑠 for the partitions (blue, green, and red curves). 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

217 

 

Figure E.2.3-2: The corresponding cumulative distribution functions: 𝑔𝑚𝑐𝑑𝑓 (black) and underlying 𝑐𝑑𝑓 

of the partitions (blue, red, green); the plot is cumulative probability (unit-less) versus value of 𝜖𝑧 

(meters) 

Example 2 of 𝒈𝒎𝒑𝒅𝒇 and corresponding 𝒈𝒎𝒄𝒅𝒇: 

As a further example, Figure (E.2.3-3) presents an example of the Gaussian mixture 𝑔𝑚𝑝𝑑𝑓 for a 2d 𝜖𝑋 ≡

[
𝜖𝑥
𝜖𝑦] corresponding to an MGRF consisting of 2 partitions with corresponding a priori statistics {𝑝𝑖, �̅�𝑃𝑎𝑟𝑡 𝑖, 

and 𝐶𝑋𝑃𝑎𝑟𝑡 𝑖
}:  

Partition 1: 𝑝1 = 0.6, �̅�𝑃𝑎𝑟𝑡 1 = [
0
0
], and 𝐶𝑋𝑃𝑎𝑟𝑡 1

= [
1 0
0 1

], and                (E.2.3-7) 

Partition 2: 𝑝2 = 0.4, �̅�𝑃𝑎𝑟𝑡 2 = [
2

−6
], and 𝐶𝑋𝑃𝑎𝑟𝑡 2

= [
3 0
0 2

]. 

 

In the figure’s axis labels and title, 𝜖𝑥 and 𝜖𝑦 are designated x and y, respectively, for convenience. 
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Figure E.2.3-3: The Gaussian mixture probability density function 𝑔𝑚𝑝𝑑𝑓 for a 2d error 𝜖𝑋 = [𝜖𝑥 𝜖𝑦]𝑇 

corresponding to an arbitrary 3d geolocation 𝑋 = [𝑥 𝑦 𝑧]𝑇 in the MGRF (product); the plot is 

probability (unit-less/meters-squared) versus value 𝜖𝑋 (meters), with error components 𝜖𝑥 and 𝜖𝑦 

represented as x and y, respectively, in the figure 

Figure (E.2.3-4) presents the corresponding Gaussian mixture 𝑔𝑚𝑐𝑑𝑓: 
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Figure E.2.3-4: The corresponding Gaussian mixture cumulative distribution function 𝑔𝑚𝑐𝑑𝑓; the plot is 

cumulative probability (unit-less) versus the value 𝜖𝑋 (meters) with error components represented as x 

and y in the figure 

As further information, the predictive statistics for the partitions of Equation (E.2.3-7) were based on the 

predictive statistics for the two underlying random fields that follow: 

Random Field 1: �̅�𝑅𝐹1
= [

0
0
], and 𝐶𝑋𝑅𝐹1

= [
1 0
0 1

], and                  (E.2.3-8) 

Random Field 2 :, �̅�𝑅𝐹2
 = [

2
−6

], and 𝐶𝑋𝑅𝐹2
= [

2 0
0 1

]. 

 

Recall that per the baseline random Field-to-Partition Mapping function, the errors in the geolocations 

associated with Partition 1 are from Random Field 1, and those associated with Partition 2 are the sum of 

two errors, one from Random Field 1 and one from Random Field 2. 

Arbitrary geolocations 𝑿𝟏 and 𝑿𝟐 in the product and their relative error 

Using the equations of Section E.2.2 and taking into account that 𝑝𝑖  is the a priori probability that 

geolocation 𝑋1 is in partition 𝑖 and 𝑝𝑗  𝑖𝑠 the a priori probability that geolocation 𝑋2 is in partition 𝑗, for 

𝑖 = 1, . . , 𝑛 and 𝑗 = 1, . . , 𝑛, we have the following formula for the probability density function 

corresponding to the error in an arbitrary geolocation in the product: 
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𝑟𝑒𝑙_𝑔𝑚𝑝𝑑𝑓(𝜖𝑋) ≡ ∑ ∑ 𝑝𝑖 𝑝𝑗  𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗
𝑛
𝑗=1 (∆𝑋)𝑛

𝑖=1 ,             (E.2.3-9) 

where 𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗  was defined in Equation (E.2.2-15); this is also equivalent to: 

𝑟𝑒𝑙_𝑔𝑚𝑝𝑑𝑓(𝜖𝑋) = ∑ 𝑝𝑖
2𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖

𝑛
𝑖=1 (∆𝑋) + 2∑ ∑ 𝑝𝑖𝑝𝑗𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗

𝑛
𝑗=𝑖+1 (∆𝑋)𝑛

𝑖=1 ;          (E.2.3-10) 

Integrating 𝑟𝑒𝑙_𝑔𝑚𝑝𝑑𝑓, we obtain the cumulative distribution function, where  𝑟𝑒𝑙_𝑐𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗 was 

defined in Equation (E.2.2-16) 

𝑟𝑒𝑙_𝑔𝑚𝑐𝑑𝑓(𝜖𝑋) ≡ ∑ ∑ 𝑝𝑖 𝑝𝑗  𝑟𝑒𝑙_𝑐𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗
𝑛
𝑗=1 (∆𝑋)𝑛

𝑖=1  .                 (E.2.3-11) 

   

Based on 𝑟𝑒𝑙_𝑔𝑚𝑝𝑑𝑓, the corresponding mean-value of the random vector 𝑟𝑒𝑙_𝜖𝑋 corresponding to two 

arbitrary geolocations in the product is computed as follows: 

 𝑟𝑒𝑙_�̅� = 𝐸{𝑟𝑒𝑙_𝑋} = ∭ 𝑟𝑒𝑙_𝜖𝑋 𝑟𝑒𝑙_𝑔𝑚𝑝𝑑𝑓(𝜖𝑋)
∞

−∞
𝑑𝜖𝑋 =               (E.2.3-12) 

∭ 𝑟𝑒𝑙_𝜖𝑋 [∑ ∑ 𝑝𝑖  𝑝𝑗  𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗
𝑛
𝑗=1 (∆𝑋)𝑛

𝑖=1 ]
∞

−∞
𝑑𝜖𝑋 =  

∭ [∑ ∑ 𝑝𝑖  𝑝𝑗(𝜖𝑋1 − 𝜖𝑋2)𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗
𝑛
𝑗=1 (∆𝑋)𝑛

𝑖=1 ]
∞

−∞
𝑑𝜖𝑋 =  

∑ ∑ 𝑝𝑖 𝑝𝑗 ∭ (𝜖𝑋1 − 𝜖𝑋2)
∞

−∞
𝑛
𝑗=1

𝑛
𝑖=1  𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗(∆𝑋)𝑑𝜖𝑋 = ∑ ∑ 𝑝𝑖𝑝𝑗(�̅�𝑃𝑎𝑟𝑡 𝑖 − �̅�𝑃𝑎𝑟𝑡 𝑗)

𝑛
𝑗=1

𝑛
𝑖=1 = 0, 

 

where the last equality is also based on the fact that the a priori probabilities are required to sum to 1.   

Applying the same techniques used for the above mean-value derivation, we have  

𝑟𝑒𝑙_𝐶𝑋 ≡ 𝐸{(𝑟𝑒𝑙_𝑋 − 0)(𝑟𝑒𝑙_𝑋 − 0)𝑇} =                          (E.2.3-13) 

∑ ∑ 𝑝𝑖 𝑝𝑗  ((𝑋𝑖 − 𝑋𝑗) − 0) ((𝑋𝑖 − 𝑋𝑗) − 0)
𝑇
𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗

𝑛
𝑗=1 (∆𝑋)𝑛

𝑖=1 =  

∑ ∑ 𝑝𝑖 𝑝𝑗  ((𝑋𝑖 − 𝑋𝑗)) ((𝑋𝑖 − 𝑋𝑗))
𝑇
𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡 𝑖𝑗

𝑛
𝑗=1 (∆𝑋) =𝑛

𝑖=1   

∑ ∑ 𝑝𝑖 𝑝𝑗  
𝑛
𝑗=1 (𝑛

𝑖=1 𝑟𝑒𝑙_𝐶𝑋𝑃𝑎𝑟𝑡 𝑖𝑗
− (�̅�𝑖 − �̅�𝑗)) = ∑ ∑ 𝑝𝑖 𝑝𝑗  

𝑛
𝑗=1 (𝑛

𝑖=1 𝑟𝑒𝑙_𝐶𝑋𝑃𝑎𝑟𝑡 𝑖𝑗
).  

 

The above can also be expressed solely in terms of the underlying random fields as follows: 

𝑟𝑒𝑙_𝐶𝑋 = 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 1
+ ∑ ∑ 𝑝𝑖  𝑝𝑗  

𝑛
𝑗=2 (𝑛

𝑖=2 𝐶𝑋𝑅𝐹 𝑖
+ 𝐶𝑋𝑅𝐹 𝑗

) + 2𝑝1 ∑ 𝑝𝑖𝐶𝑋𝑅𝐹 𝑖
  𝑛

𝑖=1 .          (E.2.3-14) 

Note that the above mean-value and covariance matrix are for “interest only”.  That is, since 𝑟𝑒𝑙_𝜖𝑋 is not 

Gaussian distributed, these statistics do not completely characterize the corresponding probability density 

function and cumulative distribution function – these functions need to be computed directly using 

Equations (E.2.3-9) and (E.2.3-11), respectively, if of interest. 

Multiple geolocations in the product - partitions known 

In addition, the same principles used above and  those used to compute the covariance matrix 𝑟𝑒𝑙_𝐶𝑃𝑎𝑟𝑡 𝑖𝑗  

(Equation E.2.2-14) of the relative error between two geolocations in partitions 𝑖 and 𝑗 can be used to 

compute a mean-value “𝑚𝑢𝑙𝑡𝑖_�̅�” and a full multi-geolocation covariance matrix “𝑚𝑢𝑙𝑡𝑖_𝐶𝑋” about the 
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mean-value for 𝑚 errors with corresponding geolocations in 𝑚 arbitrary but known partitions.  For 

example, assuming that there are three geolocations 1, 2, and 3 of interest in corresponding partitions 𝑖1, 

𝑖2, and 𝑖3, respectively, the following is applicable and expressed in terms of the underlying random fields: 

𝜖𝑋 ≡ [
𝜖𝑋1

𝜖𝑋2

𝜖𝑋3

];                    (E.2.3-15) 

 𝑚𝑢𝑙𝑡𝑖_�̅� = 𝐸{𝜖𝑋} = 

�̅�𝑃𝑎𝑟𝑡 𝑖1

�̅�𝑃𝑎𝑟𝑡 𝑖2

�̅�𝑃𝑎𝑟𝑡 𝑖3

 = 

�̅�𝑅𝐹 1

�̅�𝑅𝐹 1

�̅�𝑅𝐹 1

 + 

�̅�𝑅𝐹 𝑖1

�̅�𝑅𝐹 𝑖2

�̅�𝑅𝐹 𝑖3

,                             (E.2.3-16) 

and where �̅�𝑅𝐹 𝑖𝑙 = 0, 𝑙 = 1, . . ,3, if Random Field 𝑖𝑙 = 1; 

𝑚𝑢𝑙𝑡𝑖_𝐶𝑋 = 𝐸{(𝜖𝑋 − �̅�)(𝜖𝑋 − �̅�)𝑇} =                   (E.2.3-17) 



𝐶𝑋𝑅𝐹 1
𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 1

𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 1

. 𝐶𝑋𝑅𝐹 1
𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 1

. . 𝐶𝑋𝑅𝐹 1

 +  

𝐶𝑋𝑅𝐹 𝑖1
𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖1 𝑖2

𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖1 𝑖3

. 𝐶𝑋𝑅𝐹 𝑖2
𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖2 𝑖3

. . 𝐶𝑋𝑅𝐹 𝑖3

,  

and where 𝐶𝑋𝑅𝐹 𝑖𝑙
= 0 if Random Field 𝑖𝑙 = 1, and  𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖𝑙 𝑙𝑚

= 0 if either Random Field 𝑖𝑙 = 1 or 

Random Field 𝑖𝑚 = 1, for all 𝑙 and 𝑚 equal to 1,2, or 3. 

Note: the above predictive statistics for random field 1 are equivalent to the predictive statistics for a 

geolocation product that are described in Appendix B, i.e., correspond to a populated predicted accuracy 

model for the geolocation product.  The appendix also details methods for population.  

The multi-geolocation covariance matrix allows for the proper weighting of the corresponding 𝑚 

geolocations as “control” information in other geolocation products or related objects.  It properly 

accounts for their correlation. 

Scalar Accuracy metrics 

Scalar accuracy metrics, including CE90 and LE90, should also be computed for the predicted accuracy and 

predicted relative accuracy for geolocations in each specific partition and for geolocations in the product 

in general (partition(s) unknown) as detailed in Section E.2.5.   

Probability levels XX for the scalar accuracy metrics corresponding to the product in general should include 

XX=90, XX=99, and possibly XX=999 (99.9 %).  The latter two probability levels “capture” any long Gaussian 

mixture “probability” tails possible with multiple partitions when some of the partitions have a low-

probability of occurrence but statistically large errors relative to the other partitions. 

E.2.4 Optional generalizations 

An MGRF as presented in the previous sections is very general, both in practice and theoretically.  In fact, 

regarding the latter, an MGRF with only one partition corresponds to a wide-sense homogeneous 
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(“stationary”) random field since the predictive statistics do not change with geolocation 𝑋 in the MGRF 

or product.  On the other hand, if the MGRF contains multiple partitions, the predictive statistics change 

with geolocation 𝑋; hence, the MGRF corresponds to a non-homogeneous (“non-stationary”) random 

field - see TGD 1, TGD 2a, and TGD 2e for more details regarding random fields. 

In addition, there are additional and practical generalizations that are optional, as described below: 

Random Field-to-Partition Mapping 

The equations of Section E.2.2 are based on the baseline “Random Field-to-Partition Mapping”, i.e., 

Partition 1 consists of error corresponding to Random Field 1, and all other Partitions 𝑖 > 1 (if present) 

consist of the sum of two independent errors, one from Random Field 1 and one from Random Field 𝑖.  

Random Field 1 represents MGRF or product-wide systematic errors and the other random fields 

represent additive errors generally associated with “problem” product generation corresponding to 

different areas or types of features in the product. 

These equations can be generalized to an arbitrary “Random Field-to-Partition Mapping” if so desired, 

i.e., an arbitrary subset of the random fields is mapped to each partition, and where the number of 

partitions 𝑚 is not necessarily equal to the number of random fields 𝑛.  However, only equations based 

on the baseline mapping were previously presented, partially in order to keep the corresponding notation 

from getting too complicated.  If a more general mapping is desired, the equations in Section E.2.1 

corresponding to random fields remain the same, however the equations of Sections E.2.2 and E.2.3 

corresponding to partitions require straight-forward modifications, primarily to account for the 

correlation of errors between any pair of the 𝑚 partitions that contain from 0 to 𝑛 of the same random 

fields. 

As a final comment regarding possible generalizations, one such generalization is termed “direct mapping” 

and can be implemented using the equations as currently documented.  This particular generalization 

corresponds to each Partition 𝑖, 𝑖 = 1, . . , 𝑚 = 𝑛, solely consisting of errors from Random Field 𝑖.  That is, 

errors between partitions are not correlated, but of course, are still correlated for any two geolocations 

associated with the same partition.  This generalization can be performed as follows using the baseline 

mapping and corresponding documented equations: define 𝑛 + 1 partitions and 𝑛 + 1 random fields, 

where the probability of occurrence of Partition 1 is set to a negligible value (essentially zero).  Set the 

predictive statistics for partitions and random fields 𝑖 = 2, . . , 𝑛 + 1 to their desired counterparts 𝑖 − 1 

described earlier in this paragraph. 

Conditional partitions 

The various equations in Section E.2.3 can also be generalized in a straight-forward manner consistent 

with the assumption that relevant geolocations correspond to arbitrary partitions contained in a subset 

of the entire set of partitions.  All that needs to be done is to renormalize the applicable partition 

probabilities so that they sum to 1.  Thus, for example, if there are a total of 4 partitions specified for the 

MGRF, we can compute relevant 𝑔𝑚𝑝𝑑𝑓, 𝑔𝑚𝑐𝑑𝑓, 𝑟𝑒𝑙_𝑔𝑚𝑝𝑑𝑓, and 𝑟𝑒𝑙_𝑔𝑚𝑐𝑑𝑓 for geolocation(s) known 

not to reside in partitions 2 and 3. 
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“Random Regions” 

Regarding MGRF content (Section E.2) in general: there can be multiple partitions, but no specific 

descriptions of the partitions other than for partition 1 which is applicable to all geolocations not in the 

other partitions by definition, i.e., descriptions for the partitions are “random region”, in which case we 

simply want more realistic (higher fidelity) probability density functions than those that are explicitly 

Gaussian.  

E.2.5 Computation of scalar accuracy metrics and their importance 

Scalar accuracy metrics, such as circular error CE90, CE99, relCE90, and relCE99 associated with random 

vectors (errors) 𝜖𝑋 corresponding to an MGRF are important for practical applications, and a summary of 

how they may be computed based on the a priori statistics of the MGRF (product) is presented below. 

If errors are associated with geolocation(s) in a specific partition of the MGRF or with an MGRF with only 

one partition, errors are multivariate Gaussian distributed and techniques for their computation 

(simulation) are presented in TGD 2a (Predictive Statistics) and TGD 2e (Monte Carlo Simulation).  If errors 

are associated with arbitrary geolocations in an MGRF with multiple partitions, they are not multivariate 

Gaussian distributed – they are multivariate mixed Gaussian distributed.  However, they can still be 

computed (simulated) using a simple modification of the Monte-Carlo simulation technique that was 

detailed in TGD 2a (Section 5.4.2.2), TGD 2e (Example 2 of Section 5.2.2), and [4].   

The technique is illustrated below for use in the computation of the predictive statistics CEXX, with 

straight-forward modifications for the computation of both LEXX and SEXX, where XX corresponds to the 

probability level, e.g., CE90 is the radius of a circle such that there is a 90% probability that horizontal 

geolocation error resides within, or equivalently, if the circle is centered at the geolocation instead of at 

zero, that the true geolocation resides within.  The technique is applicable to relative errors as well, by 

simply using their associated a priori statistics.  Also, regardless whether for predicted accuracy or 

predicted relative accuracy, if an MGRF has only one partition, this same technique can also be used for 

convenience.  See Appendix F for corresponding pseudo-code that includes the generation of scalar 

predicted accuracy metrics CEXX for horizontal errors, LEXX for vertical errors, and corresponding plots. 

A note regarding the symbology used in this section: scalar accuracy metrics with no subscript correspond 

to arbitrary geolocations in the MGRF or product, whereas scalar accuracy metrics with subscript 𝑖 

correspond to geolocations associated with or “in” partition 𝑖, 𝑖 = 1, . . , 𝑛.   Similarly, underlying predictive 

statistics corresponding to partition 𝑖 are subscripted with 𝑖 instead of 𝑃𝑎𝑟𝑡 𝑖 for convenience, such as 𝐶𝑋𝑖
 

instead of 𝐶𝑋𝑃𝑎𝑟𝑡 𝑖
. 

Algorithm for the generation of Circular Error corresponding to predicted accuracy 

(1) Convert 𝑋𝑋 probability in percent to a strict probability: 𝑋𝑋 → 𝑋𝑋/100;        (E.2.5-1) 

(2) Compute 𝑝𝑖 × 107 Gaussian distributed horizontal (2d) error samples corresponding to each 

partition 𝑖 and consistent with the partition’s specified mean-value �̅�𝑖  and covariance matrix 𝐶𝑋𝑖
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corresponding to horizontal errors; e.g., the desired 𝐶𝑋𝑖
 is the upper left 2 × 2 of the provided 

3 × 3 𝐶𝑋𝑖
; 3 × 3 𝑟𝑒𝑙_𝐶𝑋𝑖

 if for relative accuracy. 

(3) Combine the samples into one concatenated 2 × 𝑁 vector with 𝑁 = 1 × 107 2d elements.  

Convert to radial errors (error magnitude) and order the 1d entries by ascending magnitude.  Set 

CEXX corresponding to the MGRF (Gaussian mixture distribution) to the  (𝑋𝑋) × 107 ordered 

entry; 𝑟𝑒𝑙_𝐶𝐸𝑋𝑋 for relative accuracy. 

The total number of 𝑁 2d entries equal to 1 × 107 used in the above is a recommended value.  It can be 

lowered to 1 × 106 if there is only one partition with adequate statistical significance.  If there is more 

than one partition it can also be lowered to 1 × 106, but with lessor statistical significance of results 

possibly corresponding to higher values of 𝑋𝑋, such as 𝑋𝑋 ≥ 99, particularly if some of the partitions 

have a relatively small probability of occurrence along with a priori statistics that include either a 

significant non-zero mean-value or a relatively large covariance of error.  The use of 1 × 107 samples on 

a notebook computer requires approximately less than 1 second of wall-clock time using non-optimized 

MATLAB pseudo-code, and less than 0.1 seconds if 1 × 106 samples are used. 

The following presents an example of the computation of CE90 for an arbitrary geolocation corresponding 

to an MGRF with three partitions; corresponding a priori statistics are as follows for the horizontal (x and 

y) geolocation errors: 

partition probability mean-value covariance matrix          (E.2.5-2) 

1  .6  [
0
0
]  [

2 0
0 2

] 

2  .2  [
−2
−2

]  [
11 8
8 11

] 

3  .2  [
2
2
]  [

18 0
0 18

]. 

Note that the off-diagonal entries in the covariance matrix for partition 2 correspond to non-zero intra-

state vector correlation between the x and y geolocation error components.   

The actual statistics for the MGRF are usually relative to 3d errors, not 2d horizontal errors alone.  Thus, 

the mean-value and covariance matrix in Equation (E.2.5-2) are typically the first two elements in a 3x1 

mean-value and the upper left 2x2 in a 3x3 covariance matrix.  

Figure E.2.5-1 presents the first 2,000 independent samples of the combined (by probability of partition) 

horizontal error samples using the a priori statistics of Equation (E.2.5-2).  The dots represent the 

individual samples: red dots, cyan dots, and green dots, corresponding to samples from partitions 1, 2, 

and 3, respectively, in correct proportions based on their a priori probability of occurrence.  (Magenta 

dots (.m), when present, correspond to any remaining partitions, i.e., the summed effects of all partitions 

greater than 3.) 
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Figure E.2.5-1 also includes 𝐶𝐸90, 𝐶𝐸99, and 𝐶𝐸999 (99.9%) corresponding to an arbitrary geolocation 

in the MGRF, computed using all 1 × 107 samples, and correspond to the radius of the blue, blue dashed-

dot, and blue dashed circles, respectively.  The underlying probability distribution is a Gaussian mixture 

distribution. 

𝐶𝐸901 is also included in Figure E.2.5-1 and corresponds to a geolocation known to be in partition 1 and 

was computed for comparison.  It corresponds to the red circle in the figure.  It was calculated based on 

samples from partition 1 only, i.e., corresponds to a Gaussian distribution. 

 

Figure E.2.5-1: Example 1: Graphical representation of the computed a priori 𝐶𝐸90 (blue circle), 𝐶𝐸99 

(dashed-dot blue circle), and 𝐶𝐸999 (dashed blue circle) for the MGRF corresponding to an arbitrary 

geolocation; red, cyan, and green dots correspond to representative error samples from partition 1, 

partition 2, and partition 3, respectively; computed a priori 𝐶𝐸901(red circle) corresponding to a 

geolocation known to be in partition 1 included for comparison. 

For an MGRF containing a partition with a low probability of occurrence and with either a large non-zero 

mean-value of error or a large covariance matrix relative to the other partitions, it is recommended that 

the 99.9% probability 𝐶𝐸999 be computed as well, as illustrated above.  

The following table summarizes the above results. 
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Table E.2.5-1: Example 1: CE in meters for different probability levels for an arbitrary geolocation (first 

row) and for a geolocation assumed in partition 1 (second row) of the MGRF or product: 

  

As discussed above, CE99 and possibly CE999 are recommended in addition to CE90 for MGRF 

applications.  This is further illustrated in the more extreme and two-partition Example 2 below.  The a 

priori statistics for the MGRF are presented first, followed by Table E.2.5-2 of scalar predicted accuracy CE 

results (no plots): 

partition probability mean-value covariance matrix          (E.2.5-3) 

1  .95  [
0
0
]  [

1 0
0 1

] 

2  .05  [
0
0
]  [202 0

0 202] 

Table E.2.5-2: Example 2: CE in meters for different probability levels for an arbitrary geolocation (first 

row) and for a geolocation assumed in partition 1 (second row) of the MGRF or product: 

  

Without the inclusion of CE99 and possibly CE999 for an arbitrary geolocation, the effect of the non-

nominal partition 2, with only a 0.05 probability of occurrence but with a very large covariance matrix 

relative to the nominal partition 1, cannot be readily seen.  It is these larger probability values for CE (e.g. 

CE99) that let the user conveniently understand the potential effects on an arbitrary geolocation of a low-

probability partition “with” a very high a priori statistical error.  Furthermore, note the much larger 

𝐶𝐸99/𝐶𝐸90 and 𝐶𝐸999/𝐶𝐸90 ratios corresponding to an arbitrary geolocation versus those 

corresponding to a geolocation in partition 1.  For example, 𝐶𝐸99/𝐶𝐸90 = 35.9/2.4 ≅ 15 versus 

𝐶𝐸991/𝐶𝐸901 = 3/2.1 ≅ 1.5.   

Of course, if a geolocation of interest is known to reside in partition 𝑖, 𝐶𝐸90𝑖 is of interest, and possibly 

𝐶𝐸99𝑖 and 𝐶𝐸999𝑖 as well.  Therefore, it is recommended that all relevant scalar accuracy metrics be 

computed and be made available to the “down-stream” user via metadata or its equivalent: 

{𝐶𝐸90, 𝐶𝐸99, 𝐶𝐸999} as well as {𝐶𝐸90𝑖, 𝐶𝐸99𝑖}, for partitions 𝑖 = 1, . . , 𝑛, as detailed in Section E.5.  

Note that, since errors in partition 𝑖 are assumed Gaussian distributed, 𝐶𝐸99𝑖 (and 𝐶𝐸999𝑖) can be 

computed from 𝐶𝐸90𝑖 as a scalar multiple.  However, 𝐶𝐸99𝑖 is recommended for inclusion in the 

metadata for convenience of the “down-stream” user. 

location: CE90 m CE99 m CE999 

arbitrary 7.2 12.2 15.7

partition 1 3.0 4.3 5.3

location: CE90 m CE99 m CE999 

arbitrary 2.4 35.9 56

partition 1 2.1 3 3.7
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Finally, as discussed above, scalar accuracy metrics corresponding to an MGRF are convenient, practical, 

and important statistics.  However, as a reminder, the corresponding probability distribution function 

(𝑔𝑚𝑝𝑑𝑓) and cumulative distribution function (𝑔𝑚𝑐𝑑𝑓) contain more information than do the scalar 

accuracy metrics and can be computed using the partitions’ a priori statistics as detailed earlier.  In 

particular, 𝑔𝑚𝑝𝑑𝑓 may be useful for more advanced, typically non-linear, applications.  Recall that 

𝑔𝑚𝑝𝑑𝑓 corresponds to a Gaussian mixture distribution of errors corresponding to an arbitrary 

geolocation in the MGRF or product.  It reduces to a Gaussian distribution if there is only one partition in 

the MGRF. 

Figure E.2.5-2 presents a 𝑔𝑚𝑝𝑑𝑓 that corresponds to a somewhat extreme case in order to better 

illustrate the information that it can contain.  The 𝑔𝑚𝑝𝑑𝑓 was computed based on the following predictive 

statistics for the partitions: 

partition probability mean-value covariance matrix          (E.2.5-4) 

1  .2  [
0
0
]  [

1 0
0 1

] 

2  .4  [
−6
−6

]  [
3 1.9

1.9 3
] 

3  .4  [
3
3
]  [

2 0
0 8

] 

 

Figure E.2.5-2: 𝑔𝑚𝑝𝑑𝑓 corresponding to the statistics of Equation (E.2.5-4) 



NGA.SIG.0026.08_1.0_ACCESQC 

 
 

228 

E.2.6 Summary of relevant MGRF statistical terminology/symbology 

The following is a summary of the terminology/symbology of the major predictive statistics corresponding 

to geolocation errors represented by an MGRF for the predicted accuracy of a geolocation product.  

Included are the relevant equation numbers corresponding to their original definition/derivations for 

further reference. 

(1) Random Field 𝑹𝑭𝒊, 𝒊 = 𝟏, . . , 𝒏 

Statistics for 𝜖𝑋 corresponding to Random Field 𝑅𝐹𝑖, the error in a geolocation 𝑋: 

number of random fields: 𝑛   a defining input 

mean-value: �̅�𝑅𝐹 𝑖    a defining input              (original)  Equation (E.2.1-1) 

covariance matrix: 𝐶𝑋𝑅𝐹 𝑖
   a defining input     Equation (E.2.1-2) 

spdcf: 𝑠𝑝𝑑𝑐𝑓𝑅𝐹 𝑖(∆𝑋)    a defining input     Equation (E.2.1-3) 

probability density function: 𝑝𝑑𝑓𝑅𝐹 𝑖(𝜖𝑋)       Equation (E.2.1-4) 

cumulative distribution function: 𝑐𝑑𝑓𝑅𝐹 𝑖(𝜖𝑋)       Equation (E.2.1-4) 

 

Statistics associated with the errors 𝜖𝑋1 and 𝜖𝑋2 – both errors correspond to Random Field 𝑅𝐹𝑖 (cross-

covariance = 0 if errors correspond to different random fields): 

cross-covariance matrix: 𝑐𝑟𝑜𝑠𝑠_𝐶𝑋𝑅𝐹 𝑖
        Equation (E.2.1-13) 

  

Statistics for the relative error 𝑟𝑒𝑙_𝜖𝑋 = (𝜖𝑋1 − 𝜖𝑋2), where both errors correspond to Random Field 𝑅𝐹𝑖: 

mean-value: 𝑟𝑒𝑙_�̅�𝑅𝐹𝑖
= 0         Equation (E.2.1-14) 

covariance matrix: 𝑟𝑒𝑙_𝐶𝑋𝑅𝐹 𝑖
         Equation (E.2.1-15) 

 

(2) Partition 𝑷𝒂𝒓𝒕𝒊, 𝒊 = 𝟏, . . , 𝒏 

It is assumed that an error in a geolocation associated with 𝑃𝑎𝑟𝑡1 corresponds to 𝑅𝐹1 and an error in a 

geolocation associated with 𝑃𝑎𝑟𝑡𝑖, 1 < 𝑖 ≤ 𝑛, is the sum of two independent errors, one corresponding 

to  𝑅𝐹1 and one corresponding to 𝑅𝐹𝑖.  Correspondingly, the number of partitions 𝑛 is equal to the number 

of random fields 𝑛. 

number of partitions: 𝑛    a defining input      Equation n/a 

partition description:{𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛}𝑃𝑎𝑟𝑡𝑖 a defining input      Equation n/a 

partition probability of occurrence: 𝑝𝑖   a defining input      Equation n/a 

 

Geolocations known to correspond to Partition 𝑷𝒂𝒓𝒕𝒊  

Statistics for 𝜖𝑋 corresponding to arbitrary geolocation 𝑋 in  𝑃𝑎𝑟𝑡𝑖: 
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mean-value:  �̅�𝑃𝑎𝑟𝑡𝑖
                   (original) Equation (E.2.2-1)  

covariance matrix:  𝐶𝑋𝑃𝑎𝑟𝑡𝑖
         Equation (E.2.2-2)  

probability density function:  𝑝𝑑𝑓𝑃𝑎𝑟𝑡𝑖        Equation (E.2.2-3) 

cumulative distribution function: 𝑐𝑑𝑓𝑃𝑎𝑟𝑡𝑖
     Equation (E.2.2-3) 

scalar accuracy metrics 𝐿𝐸𝑋𝑋𝑖, 𝐶𝐸𝑋𝑋𝑖;  𝑋𝑋 = 90 and 99    Equation (E.2.4-1) 

 

Statistics for relative error 𝑟𝑒𝑙_𝜖𝑋 = (𝜖𝑋1 − 𝜖𝑋2) corresponding to arbitrary geolocations 𝑋1 and 𝑋2 in 

𝑃𝑎𝑟𝑡𝑖:   

mean-value:  𝑟𝑒𝑙_�̅�𝑃𝑎𝑟𝑡𝑖
                     Equation (E.2.2-6) 

covariance matrix:  𝑟𝑒𝑙_𝐶𝑋𝑃𝑎𝑟𝑡𝑖
      Equation (E.2.2 -7) 

probability density function: 𝑟𝑒𝑙_𝑝𝑑𝑓𝑃𝑎𝑟𝑡𝑖
      Equation (E.2.1-8) 

cumulative distribution function: 𝑟𝑒𝑙_𝑐𝑑𝑓𝑃𝑎𝑟𝑡𝑖
    Equation (E.2.1-8) 

scalar rel accuracy metrics: 𝑟𝑒𝑙_𝐿𝐸𝑋𝑋𝑖, 𝑟𝑒𝑙_𝐶𝐸𝑋𝑋𝑖;  𝑋𝑋 = 90 and 99 Equation (E.2.5-1) 

 

Arbitrary geolocation(s) in the MGRF – specific partition(s) unknown  

Statistics for 𝜖𝑋 corresponding to arbitrary geolocation 𝑋: 

mean-value: �̅�               Equation (E.2.3-2) 

covariance matrix: 𝐶𝑋        Equation (E.2.3-4)  

probability density function: 𝑔𝑚𝑝𝑑𝑓      Equation (E.2.3-1) 

cumulative distribution function : 𝑔𝑚𝑐𝑑𝑓     Equation (E.2.3-6) 

scalar accuracy metrics:    𝐿𝐸𝑋𝑋, 𝐶𝐸𝑋𝑋; 𝑋𝑋 = 90, 99, and 999   Equation (E.2.5-1) 

 

Statistics for relative error 𝑟𝑒𝑙_𝜖𝑋 = (𝜖𝑋1 − 𝜖𝑋2) corresponding to arbitrary geolocation 𝑋1  and 𝑋2: 

mean-value: 𝑟𝑒𝑙_�̅�               Equation (E.2.3-12) 

covariance matrix: 𝑟𝑒𝑙_𝐶𝑋       Equation (E.2.3-13) 

probability density function: 𝑟𝑒𝑙_𝑔𝑚𝑝𝑑𝑓      Equation (E.2.3-9) 

cumulative distribution function : 𝑟𝑒𝑙_𝑔𝑚𝑐𝑑𝑓     Equation (E.2.3-11) 

scalar rel accuracy metrics:    𝐿𝐸𝑋𝑋, 𝐶𝐸𝑋𝑋; 𝑋𝑋 = 90, 99, and 999  Equation (E.2.5-1) 

 

Multiple geolocation(s) in the MGRF  - partitions known  

mean-value:  𝑚𝑢𝑙𝑡𝑖_�̅�        Equation (E.2.3-16)  

covariance matrix: 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋: covariance matrix     Equation (E.2.3-17) 

 

All the above statistics can be derived per the equations of Section E.2 from the small subset of predictive 

statistics that correspond to “a defining input” in the above section.   
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Typically, the “down-stream” user of the product is only interested in a subset of the statistics that 

correspond to partitions and it is recommended that they be pre-computed and included in the product’s 

metadata or its equivalent for the convenience of the user.  However, for completeness, a subset of the 

statistics corresponding to random fields is also recommended for inclusion, and is required for optional 

near-optimal adjustment of the product (Section E.3).  Section E.5 details recommended metadata. 

E.3 Adjustability of the MGRF (product) 

For some applications of a product, it may be desirable to adjust or correct the product prior to its 

subsequent use, or more generally, to fuse it with other products.  This is described below assuming an 

MGRF representation of the (pre-corrected) product’s predicted accuracy.  Section E.3.1 describes 

adjustment of a product of interest and Section E.3.2 generalizes this to the fusion or simultaneous 

adjustment of multiple products of interest.  Fusion of multiple products is preferred in general; however, 

its description in Section E.3.2 does rely on the description of product adjustment in Section E.3.1. 

Adjustment/fusion of the product(s) is not applicable to the typical “down-stream” user of the product(s).  

However, when implemented, a user should “call” an available application or code module via a 

standardized API (Application Program Interface) that essentially implements the following 

descriptions/designs. 

For those readers not interested in details regarding either product adjustment (Section E.3.1) or the 

fusion of multiple products (Section E.3.2), it is recommended that they still review Section E.3.2.5 which 

presents an example of fusion in order to better understand its overall purpose and its effectivity in 

conjunction with the use of MGRF for the representation of predicted accuracy. 

E.3.1 Adjustment of a product 

This section describes the adjustment of a product of interest based on other overlapping products and/or 

surveyed ground control.  Only the product of interest is adjusted.    

The adjustment technique for a geolocation product relies on a populated Geolocation Product Predicted 

Accuracy Model, or more specifically, a populated MGRF.  It is very similar to the adjustment technique 

for data/products that correspond to an image and that relies on a populated Geolocation Data Predicted 

Accuracy Model: Measurement-space.  Both adjustment techniques rely on the concept of a correction 

grid.  Differences in the two adjustment techniques, including some symbology, are primarily due to: 

 The use of 3d (geolocation) versus 2d (image location) in the data/product  

 The explicit use of multiple random fields (and partitions) for representation of predicted 

accuracy for the geolocation product 

The adjustment technique for a geolocation product is based on the correction grid (Adjustment Model) 

that was described in general in Section 5.3.3.1 of the main body of this document.  Section 5.3.3.1 also 

includes an example of the adjustment technique as applied to an image and which is further detailed in 

Appendix D including various performance results. 
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The performance results presented in Appendix D are also generally applicable to the use of the correction 

grid for a 3d geospatial product.  In Addition, Appendix D also contrasts the use of a correction grid with 

a correction model that is based on the solution for deterministic but unknown parameters, such as a 

sparse set of parameters corresponding to an affine transformation – applicable to either an image or, 

with the use of a few more parameters, to a 3d geolocation product.  As discussed in Appendix D, if errors 

are known a priori to correspond to the affine transformation, a corresponding correction model performs 

better than a correction grid.  However, a correction grid is more robust and therefore recommended for 

Commodities data with little or no reliable accuracy pedigree, i.e., an affine transformation is not known 

to be applicable in general. 

E.3.1.1 Solution/algorithm overview 

Figure E.3.1.1-1 presents an example of a correction grid for a geolocation product and related definitions.  

The correction grid is rectangular and contains an arbitrary number of grid points in both the grid’s rows 

and columns, but is a square (3 × 3) grid in this example for simplicity and clarity.  This particular 

correction grid is also assumed applicable in some of the definitions and equations that follow in terms of 

indexing.  However, indexing is easily generalized in an intuitive manner to correspond to a correction grid 

of arbitrary size. 

In addition, geolocations are assumed 3d and their corresponding errors to be corrected are assumed 3d 

as well.  The correction grid spans a corresponding horizontal plane, i.e., is indexed by the geolocation’s 

horizontal coordinates (𝑥, 𝑦) More specifically, the representation of geolocations and their errors are 

assumed relative to a local tangent plane typically centered at the approximate center of the product’s 

AOI or “footprint”.  

The underlying geolocations or grid points in the product that correspond to the elements of the 

correction vector 𝛿𝑋 and are represented by the gray circles in the figure.  The blue circle and the blue 

square represent measurements (geolocations) in the product and are explained later. 
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Figure E.3.1.1-1: Correction grid (3 × 3) and related definitions for a geolocation product  

The correction grid is used to correct for product-wide systematic errors, i.e., errors in Random Field 1 

which are present in all partitions of the MGRF (product).  

Preliminary definitions 

𝛿𝑋 = [𝛿𝑋1
𝑇 . . 𝛿𝑋𝑛

𝑇]𝑇 is defined as the correction vector for solution, and consists of individual 3 × 1 

geolocation corrections 𝛿𝑋𝑗, for 𝑗 = 1, . . , 𝑛 , each with an underlying geolocation 𝑋𝑗 in the product.  The 

dimension of 𝛿𝑋 is 3𝑛 × 1.   

The various 𝛿𝑋𝑗, 𝑗 = 1. , , 𝑛, are the elements of the correction grid, where 𝑛 = 9 in this example. 

A priori values 

The a priori mean-value and error covariance matrix for 𝛿𝑋 are equal to 𝑚𝑢𝑙𝑡𝑖_�̅� and 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋, 

respectively, defined earlier in Equations E.2.3-16 and E.2.3-17, respectively.  These derived predictive 

statistics are applicable to the errors in 𝑋𝑗, 𝑗 = 1, . . , 𝑛, and assume that their corresponding partitions in 

the MGRF (product) are known.   𝑚𝑢𝑙𝑡𝑖_�̅� is typically equal to zero and assumed as such for the remainder 

of this section.  If it is not equal to zero for a specific product, simply subtract its components from 

corresponding conjugate measurements and then add it back to the resultant solution for 𝛿𝑋 (𝛿�̂�) which 

is derived later in this section. 

In summary, the a priori predictive statistics applicable to the correction vector for solution are: 

x 
y 

Geolocation Product with Correction Grid 

The correction vector 𝛿𝑋 

contains 3d correction elements 

corresponding to the horizontal 

locations in the product indicated  

by the gray circles and optionally 

the blue square 

Conjugate measurement  

𝑋𝑙
∗ in product used in the solution for 𝛿�̂�  

corresponds to horizontal location: 

 

𝛿𝑋5 

An arbitrary measurement (3d location) 

in product to be corrected using   

bilinear interpolation of elements 

in 𝛿�̂� corresponds to horizontal  

location: 

 

𝛿𝑋7 

𝛿𝑋2 𝛿𝑋3 𝛿𝑋1 

𝛿𝑋6 𝛿𝑋4 

𝛿𝑋9 𝛿𝑋8 

A priori value of correction vector : 𝛿𝑋 = 0 

A priori correction vector covariance matrix :  

𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖    

A posteriori correction vector solution: 𝛿�̂� 

A posteriori correction vector solution covariance matrix: 𝐶_𝛿�̂� 

𝛿𝑋𝑙
∗ 
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𝐸{𝛿𝑋} = 0  (3𝑛 × 1) and 𝐸{𝛿𝑋𝛿𝑋𝑇} = 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋   (3𝑛 × 3𝑛}. 

As such, the actual value for 𝛿𝑋 whenever used in the remainder of this section is zero, i.e., 𝛿𝑋 = 0. 

For the best solution results, it is recommended that adjacent corrections (locations) in the correction grid 

have an a priori spatial correlation of at least 0.9 for each (x,y,z) component, and preferably 0.95 or higher.  

This can be achieved by specifying a larger sized correction grid if necessary, in coordination with the spdcf 

used to compute 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋.    

Conjugate measurements 

Assume that there are 𝑙 = 1, . . 𝑚 geolocations available from external or control data (surveyed control 

points, other products, etc.) that overlap the product for adjustment.  More specifically, assume that there 

are 𝑚 pairs of conjugate 3d geolocations or measurements: 

𝑀_𝑐𝑛𝑡𝑟𝑙𝑙, 𝑙 = 1. . , 𝑚, geolocation identified/measured in the external or control data (3 × 1).   

 

𝑀_𝑝𝑟𝑜𝑑𝑙 ≡ 𝑋𝑙
∗, 𝑙 = 1. . , 𝑚, geolocation identified/measured in the product for adjustment (3 × 1), see 

the blue square in Figure E.3.1.1-1.  The 𝑀_𝑝𝑟𝑜𝑑𝑙 are the predicted value for the 𝑀_𝑐𝑛𝑡𝑟𝑙𝑙 based on the 

(unadjusted) product. 

 

Define the corresponding control measurement vector and product measurement vector as follows: 

𝑀_𝑐𝑛𝑡𝑟𝑙 = [𝑀_𝑐𝑛𝑡𝑟𝑙1
𝑇 . . 𝑀_𝑐𝑛𝑡𝑟𝑙𝑚

𝑇]
𝑇

  (3𝑚 × 1), 

𝑀_𝑝𝑟𝑜𝑑 = [𝑀_𝑝𝑟𝑜𝑑1
𝑇 . . 𝑀_𝑝𝑟𝑜𝑑𝑚

𝑇]
𝑇

  (3𝑚 × 1), 

 

Define the actual measurement vector in the WLS solution as their difference: 

∆𝑀 = 𝑀_𝑐𝑛𝑡𝑟𝑙 − 𝑀_𝑝𝑟𝑜𝑑    (3𝑚 × 1),   where  

∆𝑀 = [∆𝑀1
𝑇 . . ∆𝑀𝑚

𝑇]𝑇. 

Measurement errors 

We first examine the various quantities that make up the conjugate measurements  𝑀_𝑐𝑛𝑡𝑟𝑙𝑙, 𝑀_𝑝𝑟𝑜𝑑𝑙𝑙, 

and their difference ∆𝑀𝑙, 𝑙 = 1, . . , 𝑚: 

𝑀_𝑐𝑛𝑡𝑟𝑙𝑙 = 𝑋𝑙
∗_𝑡𝑟𝑢𝑒 + 𝜖_𝑐𝑛𝑡𝑟𝑙_𝑠𝑦𝑠𝑙 + 𝜖_𝑐𝑛𝑡𝑟𝑙_𝑚𝑒𝑛𝑠𝑙, 

𝑀_𝑝𝑟𝑜𝑑𝑙 = 𝑋𝑙
∗_𝑡𝑟𝑢𝑒 − 𝛿𝑋𝑙

∗ + 𝜖_𝑝𝑟𝑜𝑑_𝑚𝑒𝑛𝑠𝑙, and therefore 

∆𝑀𝑙 = −𝛿𝑋𝑙
∗ + 𝜖_𝑐𝑛𝑡𝑟𝑙_𝑠𝑦𝑠𝑙 + 𝜖_∆𝑀_𝑚𝑒𝑛𝑠𝑙, where 

𝜖_∆𝑀_𝑚𝑒𝑛𝑠𝑙 ≡ 𝜖_𝑐𝑛𝑡𝑟𝑙_𝑚𝑒𝑛𝑠𝑙 + 𝜖_𝑝𝑟𝑜𝑑_𝑚𝑒𝑛𝑠𝑙. 
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The systematic error in the product associated with the underlying geolocation 𝑋𝑙
∗ is defined as equal to 

minus its correction 𝛿𝑋𝑙
∗ which is to be estimated. This correction is not explicitly in the correction grid, 

but is related to the various components that are in the correction grid and contained in 𝛿𝑋 =

[𝛿𝑋1
𝑇 . . 𝛿𝑋𝑛

𝑇]𝑇 as shown later. 

The identification/measurement errors (𝜖_∆𝑀_𝑚𝑒𝑛𝑠) associated with ∆𝑀 are termed mensuration 

errors, and represent the summed effects of the identification/measurement errors associated with both 

the External Data (𝑀_𝑐𝑛𝑡𝑟𝑙) and the identification/measurement of its conjugate geolocations contained 

in the unadjusted product (𝑀_𝑝𝑟𝑜𝑑).   

The above mensuration errors are assumed to have a mean-value of zero and an a priori covariance matrix 

defined as 𝐶𝑜𝑣_𝑚𝑒𝑛𝑠 (3𝑚 × 3𝑚), a block diagonal matrix since errors between two different 3 × 1 

components 𝜖_∆𝑀_𝑚𝑒𝑛𝑠𝑙 are assumed uncorrelated.  𝐶𝑜𝑣_𝑚𝑒𝑛𝑠 is also typically a strictly diagonal matrix 

since errors between the three components (x,y,z) of 3 × 1 𝜖_∆𝑀_𝑚𝑒𝑛𝑠𝑙 are typically assumed 

uncorrelated as well. 

The measurement vector 𝑀_𝑐𝑛𝑡𝑟𝑙 also has additional errors (𝜖_𝑐𝑛𝑡𝑟𝑙_𝑠𝑦𝑠) associated with the external 

or control data source itself.  These errors are typically systematic or spatially correlated as well.  Their 

corresponding mean value is assumed equal to zero and their a priori error covariance matrix assembled 

and designated as 𝐶𝑜𝑣_𝑐𝑛𝑡𝑟𝑙, a full 3𝑚 × 3𝑚 with non-zero cross-covariance blocks associated with 

spatial correlation.  For example, if the control data corresponded to another geolocation product with 

MGRF-based predicted accuracy, 𝐶𝑜𝑣_𝑐𝑛𝑡𝑟𝑙 would be identical in form (not content) as the a priori error 

covariance matrix (𝑚𝑢𝑙𝑡𝑖_𝐶𝑋 ) of the product for adjustment. 

The a priori covariance for the sum of all of the above errors associated with the measurement vector ∆𝑀 

is defined and computed as follows: 

𝐶𝑜𝑣_𝑚𝑒𝑎𝑠 = 𝐶𝑜𝑣_𝑚𝑒𝑛𝑠 + 𝐶𝑜𝑣_𝑐𝑛𝑡𝑟𝑙        (3𝑚 × 3𝑚). 

Partial derivative matrix 

𝐵 ≡ 𝜕(∆𝑀)/𝜕(𝛿𝑋) =

[
 
 
 
 
𝐵1

. .
𝐵𝑙. .
𝐵𝑚]

 
 
 
 

, where 𝐵𝑙  is a 3 × 3𝑛 matrix associated with measurement ∆𝑀𝑙 and is 

defined as follows based on the measurement 𝑀_𝑝𝑟𝑜𝑑𝑙 = 𝑋𝑙
∗ corresponding to the blue square in Figure 

E.3.1.1-1 and its corresponding correction for solution 𝛿𝑋𝑙
∗.  However, in this solution approach, 𝛿𝑋𝑙

∗ is 

not in the adjustment vector and is approximated by the four adjustment elements {𝛿𝑋1, 𝛿𝑋2, 𝛿𝑋4, 

and 𝛿𝑋5} in the correction grid cell that are: 

Let 𝑎1 - 𝑎4 represent the adjustment elements’ corresponding scalar bilinear interpolation coefficients, 

respectively, computed based on the 2d distances between 𝑋𝑙
∗ and 𝑋1, 𝑋2, 𝑋4, and  𝑋5, respectively.   

Define 𝐴𝑘 = 𝑎𝑘𝐼2×2, for 𝑘 = 1, . . ,4.  (Note: the 𝑎𝑘 are non-negative and sum to 1.)   
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Therefore: 

 𝛿𝑋𝑙
∗ ≅ 𝐴1𝛿𝑋1 + 𝐴2𝛿𝑋2 + 𝐴3𝛿𝑋4 + 𝐴4𝛿𝑋5, and the  

corresponding entry in the 𝐵 matrix is equal to: 

𝐵𝑙 = [𝐴1 𝐴2 03×3 𝐴4 𝐴5 03×3 03×3 03×3 03×3]. 

That is, the measurement 𝑀_𝑝𝑟𝑜𝑑𝑙 = 𝑋𝑙
∗ is assumed to be related to the components explicitly contained 

in the adjustment vector.  

WLS solution 

The WLS solution for the correction vector is as follows: 

𝛿�̂� = (𝐶_𝛿�̂� )𝐵𝑇𝑊∆𝑀,  a 3𝑛 × 1 vector, 

where 𝑊 = (𝐶𝑜𝑣_𝑚𝑒𝑎𝑠)−1 ,  

and the a posteriori solution error covariance matrix is equal to: 

𝐶_𝛿�̂� = (𝑚𝑢𝑙𝑡𝑖_𝐶𝑋
−1 + 𝐵𝑇𝑊𝐵)

−1
,  a 3𝑛 × 3𝑛 matrix. 

 

It is recommended that the number of elements in the correction grid is such that the a priori spatial 

correction of errors corresponding to adjacent corrections 𝛿𝑋𝑗  in the correction grid is approximately 0.9 

or higher.  The higher the correlation, the more effective the solution.  In the extreme, as the a priori 

spatial correlation approaches 1.0 between virtually all corrections in the grid, this is essentially equivalent 

to solving for a product-wide bias error; and if applicable, yields the highest solution accuracy and 

corresponding predicted accuracy possible. 

 

In addition, it is recommended that the WLS solution includes processing for quality control, such as 

measurement editing and examination of the a posteriori (post-solution) measurement residuals 

normalized by their predicted accuracy.  If these residuals are outside their expected range, modify 

(scale up or down) the solution vectors a priori error covariance matrix  𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖 and/or modify 

(scale up or down) the a priori error covariance for the measurements 𝐶𝑜𝑣_𝑚𝑒𝑎𝑠 accordingly and re-

perform the WLS solution as needed.  In addition, the a priori spdcf may need similar modifications for 

best solution results.  See Section B.2.2 regarding the solution for an image correction grid for further 

details, and more generally, TGD 2d (Estimators and their Quality Control). 

Although not repeated again, the above quality control and “tuning” of the a priori predictive statistics 

for a reliable WLS solution are applicable to all of the WLS solutions described in the remaining 

(sub)sections of Section E.3. 

E.3.1.2 Alternate solution approach: optimal and recommended 
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The above solution process is near optimal, but not theoretically optimal, due to the use of interpolation 

associated with the conjugate measurements.  An optimal solution process (assuming correct a priori 

modeling) is recommended as a simple extension of the above solution process that does not require 

the interpolation, and that is defined as follows: 

Augment the state (correction) vector for solution with 3 × 1 corrections explicitly associated with the 

conjugate measurements (3d locations) in the product for correction, i.e., 𝛿𝑋𝑙
∗ associated with 𝑋𝑙

∗ , 𝑙 =

1, . . , 𝑚 (see Figure E.3.3.1-1): 

𝛿𝑋 ≡ [𝛿𝑋1
𝑇 … 𝛿𝑋𝑛

𝑇 𝛿𝑋1
∗𝑇 … 𝛿𝑋𝑚

∗ 𝑇]
𝑇

, a (3𝑛 + 3𝑚) × 1 vector. 

Augment the a priori covariance matrix as well: 𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖, an (3𝑛 + 3𝑚) × (3𝑛 + 3𝑚) matrix. 

The same method used to compute the a priori covariance matrix (𝑚𝑢𝑙𝑡𝑖_𝐶𝑋) in the first place is used to 

augment it in order to reflect the augmented correction vector for solution.  The method was defined 

earlier in Equations E.2.3-17 and E.2.3-18.  Augmentation of the matrix takes into account the a priori 

spatial correlation between all errors, computed based on the difference between all geolocation pairs 

that underline all correction elements, both 𝛿𝑋𝑖, 𝑖 = 1, . . , 𝑛 and 𝛿𝑋𝑙
∗, 𝑙 = 1, . . , 𝑚, combined. 

Redefine the partial derivative matrix 𝐵 as follows: 

𝐵 = [03𝑚×3𝑛 𝐼3𝑚×3𝑚]. 

The remaining steps in the solution are identical to those for the first solution, yielding an (3𝑛 + 3𝑚) ×

1 a posteriori solution 𝛿�̂� and a (3𝑛 + 3𝑚) × (3𝑛 + 3𝑚) a posteriori solution error covariance matrix 

𝐶_𝛿�̂�. 

This optimal solution method updates the new elements in the augmented correction vector directly via 

the measurements, whereas the original elements are now updated via their spatial correlation with the 

new elements as specified in the corresponding cross-covariance block in the augmented  

𝐶_𝛿𝑋_𝑎𝑝𝑟𝑖𝑜𝑟𝑖. 

The augmented elements can then be removed from 𝛿�̂� and their corresponding covariance block and 

cross-block from 𝐶_𝛿�̂� if so desired, making the subsequent processing for the correction of an arbitrary 

geolocation in the corrected product identical for both solution methods, and defined as follows: 

E.3.1.3 Correction of the product 

For an arbitrary geolocation in the product (see blue circle in Figure E.3.1.1-1), compute its correction as 

the bilinear interpolation of the four elements in 𝛿�̂� that correspond to the correction cell in which it 

resides, i.e., 𝛿�̂�5, , 𝛿�̂�6, 𝛿�̂�8, and 𝛿�̂�9 in this example.   The correction is added to the geolocation (the 

corrected geolocation is not shown in the figure.)  Its corresponding 3 × 3 error covariance matrix is 

defined as the bilinear interpolation of the four surrounding 3 × 3 diagonal blocks in 𝐶_𝛿�̂�.   
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Such a correction and its predicted accuracy are approximate due to the interpolation, but are 

reasonable.  Furthermore, they are virtually optimal if the a priori spatial correlation between adjacent 

corrections in the correction grid is high, a minimum of 0.9.   

A theoretically optimal correction would require an additional augmented correction 𝛿𝑋𝑙
∗∗, for each 

geolocation in the product of interest, similar to the augmented corrections 𝛿𝑋𝑙
∗ associated with the 

optimal solution for the correction vector that were defined earlier.  Optimality is defined as the 

smallest solution errors possible (minimization of the WLS cost function), given the set of available 

external or control measurements (geolocations), and that also includes reliable predicted accuracy. 

E.3.2 Generalization to the fusion of products 

The above solution/algorithm was for the adjustment of a geolocation product of interest based on 

geolocations from other overlapping products and/or external control.  Only the product of interest was 

adjusted or corrected.  This can be generalized to the simultaneous fusion of all relevant overlapping 

products, i.e., all products are simultaneously adjusted or corrected.  The corrections are automatically 

“allocated” to the various products based on measured discrepancies between their geolocations as well 

as the products’ a priori uncertainties or predicted accuracies.  For example, if there are two products for 

fusion, the first with a priori uncertainty (predicted accuracy) larger than the second, it will be 

automatically allocated larger corrections. 

The fusion of overlapping products improves the accuracy of each product and enables consistent 

geolocations across each product-pair. 

The approach presented in this section is similar to the earlier algorithms of Section E.3.1 with relevant 

changes outlined below assuming the simultaneous fusion of two overlapping products for simplicity of 

example, i.e., the fusion of two products of interest.  It also assumes that there is no explicit external 

control information available for simplicity of example as well. 

Fusion is either based on a near-optimal solution (Section E.3.2.1) or an optimal solution (Section E.3.2.2), 

where the former relies on bilinear interpolation and the latter relies on an augmented state vector for 

solution.  

E.3.2.1 Relevant modifications: bilinear interpolation assumed   

The following outlines the appropriate modifications relative to Section E.3.1.1 which corrected the 

product only.  The subscripts 1 and 2 indicate the two products of interest.  Product 1 is assumed to have 

a correction grid containing 𝑛1 corrections and product 2 a correction grid containing  𝑛2 corrections.   

 Expand the adjustment vector for solution as follows:  

 

𝛿𝑋 ≡ [𝛿𝑋1

𝛿𝑋2], where 𝛿𝑋𝑖  is defined as containing the elements of the correction grid for product  

𝑖 and has dimension 3𝑛𝑖 × 1, 𝑖 = 1,2.  The dimension of 𝛿𝑋 is 3𝑛 × 1, where 𝑛 ≡ (𝑛1 + 𝑛2).   
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Note that 𝛿𝑋𝑖  has been redefined to correspond to the 𝛿𝑋 of Section E.3.1.1, but is assumed 

applicable to product 𝑖, for 𝑖 = 1,2.  In particular, 𝛿𝑋𝑗
𝑖  corresponds to the 𝑗-th 3 × 1 element of 

the correction grid corresponding to product 𝑖. 

 

Similarly, expand the corresponding a priori error covariance matrix for 𝛿𝑋 as follows: 

 

𝑚𝑢𝑙𝑡𝑖_𝐶𝑋 = [
𝑚𝑢𝑙𝑡𝑖_𝐶𝑋

1 0

0 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋
2].  The dimension of 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋 is 3𝑛 × 3𝑛.   

 

As a reminder, and consistent with the above note regarding notation, 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋
1 actually 

corresponds to 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋 of Section E.3.1.1, but assumed applicable to product 1.  The a priori 

values of 𝛿𝑋1 and 𝛿𝑋2  reasonably assumed uncorrelated. 

 

 Redefine the measurement vector as input to the WLS solution as follows: 

∆𝑀 ≡ 𝑀_𝑝𝑟𝑜𝑑2 − 𝑀_𝑝𝑟𝑜𝑑1, where the dimension of all three vectors is 3𝑚 × 1, assuming a 

total of 𝑚 pairs of conjugate 3d measurements. 

𝑀_𝑝𝑟𝑜𝑑𝑖 is the vector of conjugate geolocations identified/measured in product 𝑖, 𝑖 = 1,2.  That 

is, they are assumed to be conjugate across the two products. 

 Redefine the partial derivative matrix 𝐵 as follows: 

 

𝐵 = [𝐵1 −𝐵2], where 𝐵𝑖  corresponds to product 𝑖, 𝑖 = 1, . . ,2, has dimension 3𝑚 × 3𝑛𝑖, and 

is analogous to 𝐵𝑙  of Section E.3.1.1 but applicable to product 𝑖. 

The dimension of the redefined  𝐵 is 3𝑚 × 3𝑛. 

As an example, assuming the same product size and the same grid size and layout for both 

products and consistent with Figure E.3.1.1-1, the matrix entry 𝐵𝑙 is equal to: 

 

𝐵𝑙 = [𝐵𝑙
1 −𝐵2

𝑙 ], where  

 

𝐵𝑙
𝑖 = [𝐴1 𝐴2 03×3 𝐴4 𝐴5 03×3 03×3 03×3 03×3], 𝑖 = 1,2,  

 

and the 𝐴𝑘, 𝑘 = 1, . .4, are equal to 𝐴𝑘 = 𝑎𝑘𝐼3𝑥3 where the 𝑎𝑘 are the scalar bilinear 

interpolation coefficients. 

 

 Redefine the a priori measurement error covariance matrix as follows: 
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𝐶𝑜𝑣_𝑚𝑒𝑎𝑠 = 𝐶𝑜𝑣_𝑚𝑒𝑛𝑠, a 3𝑚 × 3𝑚 a priori error covariance matrix corresponding to the 

summed effects of conjugate geolocation identification/measurement or mensuration error in 

products 1 and 2. 

Note that 𝐶𝑜𝑣_𝑚𝑒𝑎𝑠 no longer contains a contribution due to systematic error as the latter is 

being solved for both products 1 and 2. There is also no contribution for sensor-mensuration error 

as this also contributes to 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋 if applicable. 

 Implement the same top-level solution (Equation (E.3.1.3-1)) and subsequent processing steps 

(Equation (E.3.1.3-2)) of Section E.3.1.3, but with appropriate changes to the corresponding 

vectors and matrices as described above.   

 

The subsequent 3𝑛 × 1 solution and its 3𝑛 × 3𝑛 a posteriori error covariance matrix are as 

follows: 

𝛿�̂� ≡ [𝛿�̂�1

𝛿�̂�2
] and 𝐶𝛿�̂� = [

𝐶𝛿�̂�1 𝐶𝛿�̂�12

𝐶𝛿�̂�21 𝐶𝛿�̂�2
]. 

E.3.2.2  Relevant modifications: expanded adjustment vector assumed 

 Expand the adjustment vector for solution as follows:  

 

𝛿𝑋 ≡ [𝛿𝑋1

𝛿𝑋2], where 𝛿𝑋𝑖  has been redefined to contains the grid corrections of product 𝑖 followed 

by its ancillary corrections and has dimension 3(𝑛𝑖 + 𝑚) × 1, 𝑖 = 1,2, relative to the notation in 

Section E.3.1.2, including the definitions of the ancillary corrections.  The resultant dimension of 

𝛿𝑋 is 3𝑛 × 1, where 𝑛 ≡ (𝑛1 + 𝑛2 + 2𝑚). 

 

Similarly, expand the corresponding a priori error covariance matrix as follows: 

 

𝑚𝑢𝑙𝑡𝑖_𝐶𝑋 ≡ [
𝑚𝑢𝑙𝑡𝑖_𝐶𝑋

1 0

0 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋
2].  The dimension of 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋 is 𝑛 × 𝑛. 

 

 Redefine the partial derivative matrix 𝐵 as follows: 

 

The dimension of 𝐵 is 3𝑚 × 3𝑛 and can be partitioned as follows: 

 

𝐵 = [𝐵1 −𝐵2],  

where 𝐵𝑖 = [03𝑚×3𝑛𝑖
𝐼3𝑚×3𝑚], for products 𝑖 = 1,2. 
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 Implement the same top-level solution (Equation (E.3.1.3-1)) and subsequent processing steps 

(Equation (E.3.1.3-2)) of Section E.3.1.3, but with appropriate changes to the corresponding 

vectors and matrices as described above.   

 

The subsequent 𝑛 × 1 solution and its 𝑛 × 𝑛 a posteriori error covariance matrix are: 

𝛿�̂� ≡ [
𝛿�̂�_1

𝛿�̂�_2
] and 𝐶𝛿�̂� = [

𝐶𝛿�̂�_1 𝐶𝛿�̂�_12

𝐶𝛿�̂�_21 𝐶𝛿�̂�_2
]. 

E.3.2.3 Relevant modifications for the correction of products 

The corrected geolocations and their predicted accuracies in product 𝑖, 𝑖 = 1,2, are based on bilinear 

interpolation of their corresponding grid corrections and their predicted accuracies contained in 𝛿�̂�𝑖  and 

𝐶𝛿�̂�𝑖, respectively. 

Generalization of the entire fusion process to more than two products 

The entire fusion process described in Sections E.3.21 through E.3.2.3 can be generalized in a straight-

forward manner for the simultaneous fusion of 𝑛 > 2 products, but requires more complex notation to 

document.  In particular, the various components of the measurement vector ∆𝑀 still correspond to 

conjugate geolocations from two different products regardless the total number of products 𝑛.  

However, the various components of ∆𝑀 are further categorized by the conjugate measurements in 𝑛-

choose-2 different product-pair combinations. 

It is further recommended that the specific geolocations from a particular product are different for each 

product-pair that it is involved with in order to help ensure independent measurement errors.    

E.3.2.4 Ancillary and detailed comments/recommendations 

The following presents an ancillary comment followed by more detailed comments/recommendations, 

the latter applicable to those implementing the fusion design based on MGRF described in Sections 

E.3.2.1 through E.3.2.3: 

 Ancillary Comment: The modeling of errors based on random fields is also utilized in the 

geospatial analysis community, a subset of Geographic Information Science (GIScience).  The 

correction grid approach recommended in this document is also similar in concept to a form of 

optimal interpolation termed “Kriging” by the geospatial analysis community [9]. 

 

 A correction grid can have variable spacing, i.e., densified in those parts of the product that need 

it to ensure reasonably high spatial correlation between adjacent corrections in the correction 

grid. 

 

 If partitions associated with all relevant geolocations are unknown, proceed as usual but use 

corresponding a priori predicted accuracy for “arbitrary” geolocations. 
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 Conjugate geolocations between the other product(s) and the product of interest are 

identified/measured by either visual inspection of the products (possibly color- coded renderings) 

or by automatic correlation of their local multi-dimensional spatial or geometric shapes.  

 

 As mentioned earlier, the solution for the product realization of interest corresponds to 

corrections to systematic errors across the product realization – essentially to errors associated 

with Random Field 𝑅𝐹1 which are applicable to all partitions.   As such, and as a conservative 

approach, the predicted accuracy of an interpolated correction of an arbitrary geolocation in the 

product should also include the addition of the a priori error covariance matrix 𝐶𝑅𝐹𝑖
 for Random 

Field 𝑅𝐹𝑖 if the corresponding geolocation is associated with a Partition 𝑃𝑎𝑟𝑡𝑖, 𝑖 > 1.  This addition 

should consist of a full a priori error covariance, 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋𝑅𝐹 𝑖
 (Equation E.2.1-18), if the predicted 

relative accuracy between multiple interpolated corrections is also of interest. 

 

 It is preferred that a conjugate measurement for the solution corresponds to a geolocation in the 

product that is associated with Partition 1.  If not possible and associated with Partition 𝑖 > 1 

instead, its corresponding components in the measurement error covariance matrix (𝐶𝑜𝑣_𝑚𝑒𝑎𝑠) 

should be increased by the addition of the covariance matrix for an error corresponding to 

Random Field 𝑖 > 1.   

 

If conjugate measurements are selected automatically, the following may be a reasonable 

approach assuming that the non-nominal partitions have large covariance matrices and low 

probability of occurrence relative to the nominal partition, as typical:  (1) automatically select a 

large number of conjugate geolocations, (2) assume that they correspond to the nominal 

partition, and (3) edit measurements based on their a posteriori (post-solution) measurement 

residuals, which should remove those measurements associated with non-nominal partitions, and 

then perform (iterate) the solution again. 

 

 Random Field 𝑅𝐹1 may also contain “random” or spatial uncorrelated additive errors, such as 

sensor-mensuration error, in addition to systematic errors.  The presence of the former are 

reflected by the difference from a value of 1 in the corresponding spdcf’s value at a geolocation 

difference arbitrarily close to zero.   

 

Essentially, the above solution process (∆�̂� and 𝐶∆�̂� ) still includes this random error and its 

associated “power” after the solution is performed, as appropriate. 

 

 All conjugate geolocations affect the solution.  The contribution of a specific (conjugate) 

geolocation in the product realization of interest to the overall solution is based on its applicable 

spdcf evaluated at a geolocation difference greater than zero – equal to the difference (distance) 

of the geolocation with those geolocations in the product realization directly corresponding to 
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the correction grid.  The lower the spdcf’s computed correlation, the less impact the 

measurement has on the solution for the various components in the correction grid. 

E.3.2.5 Fusion example 

The following presents an example of fusion based on the above design and the use of simulated data:  

Ten overlapping products were fused together using five geolocation conjugate pairs (measurements) for 

each product-pair.  No external control was used.  The a priori (pre-fusion) predicted accuracy of all 

products is represented via MGRF. 

Measurements 

The geolocation corresponding to a conjugate pair was generated randomly for each conjugate pair 

corresponding to each product-pair.  A conjugate pair’s 3 × 1 measurement ∆𝑀𝑙 (a priori measurement 

residual) consists of the difference between the two geolocations and includes a random 3 × 1 

measurement error consistent with a diagonal covariance matrix equal to 𝐼3×3  (standard deviation of 

errors or “sigma” equal to 1 meter) and uncorrelated with all other such measurements. 

There are 10-choose-2 or 45 product-pairs, each with 5 conjugate pairs of measurements, for a total of 

225 conjugate measurements, i.e., the measurement vector ∆𝑀 is a 3(225) × 1 vector and its a priori 

error covariance 𝑀𝑒𝑎𝑠_𝑐𝑜𝑣 is a 3(225) × 3(225) diagonal matrix.  Use of the same number of conjugate 

pairs of measurements for each product-pair combination was assumed for simplicity of example and 

related pseudo-code.  The pseudo-code is not included in this document in order to keep its size 

somewhat reasonable. 

A priori (pre-solution) predicted accuracy 

Geolocation errors associated with product 𝑖, 𝑖 = 1, . . ,10, were assumed to correspond to the nominal 

partition for that product; hence, were represented using only one random field 𝑅𝐹𝑖 for simplicity of 

example and with a corresponding a priori 3𝑥3 error covariance matrix 𝐶𝑋𝑅𝐹 𝑖
= [

4 0 0
0 4 0
0 0 9

] for products 

𝑖 = 1,2,4,5,6,7,8,9,10 and 𝐶𝑋𝑅𝐹 3
= [

16 0 0
0 36 0
0 0 81

] for product 3.   These specific error covariance 

matrices and their diagonal elements (variances) were selected for clarity of example and for the 

illustration of underlying principles, and are not necessarily typical. 

As a reminder, when the MGRF representation of predicted accuracy for a product contains only one 

random field, as detailed above, there is also only one partition applicable for all geolocations in the 

product; hence, partitions are essentially not applicable in this example. 

The a priori spatial correlation of errors contained in each random field 𝑅𝐹𝑖 were represented using the 

same correlation function for all error components as well as for all products for simplicity of example: 

𝑠𝑝𝑑𝑐𝑓𝑅𝐹(∆𝑋) = 𝐴𝑒−√𝑑𝑥2+𝑑𝑦2/𝐷, where 𝐴 = 0.98 and the distance constant 𝐷 is equal to 2.5 times the 

width of the common AOI for all products.   Thus, for example, the x-components of error corresponding 
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to two geolocations in the same product and separated by a horizontal distance equal to the width of the 

AOI are correlated by the amount 𝑠𝑝𝑑𝑐𝑓𝑅𝐹(∆𝑋) = 0.98(0.67) = 0.66.  Those geolocations that are closer 

together are, of course, more highly correlated.  For example, two geolocations in the same product 

separated by the distance between two adjacent grid points in the same grid row or column are correlated 

by an amount 𝑠𝑝𝑑𝑐𝑓𝑅𝐹(∆𝑋) = 0.98(0.95) = 0.93.  The highest correlation possible for two non-identical 

geolocations is equal to 0.98 when their distance approaches zero.   

As reminders: (1) 𝑠𝑝𝑑𝑐𝑓𝑅𝐹(∆𝑋) ≡ 1, for the correlation of a geolocation with itself in the same product 

(∆𝑋 = 0), and (2) two geolocations in two different products are reasonably assumed uncorrelated prior 

to fusion, i.e., 𝑠𝑝𝑑𝑐𝑓𝑅𝐹(∆𝑋) ≡ 0 regardless the value of ∆𝑋. 

The a priori error covariance 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋  for the solution vector 𝛿𝑋 was computed using the above 

predictive statistics for the various random fields.  All errors in the (pre-corrected) products were 

simulated consistent with 𝑚𝑢𝑙𝑡𝑖_𝐶𝑋, including their spatial correlations.  All measurement errors were 

simulated consistent with  𝑀𝑒𝑎𝑠_𝑐𝑜𝑣.  

More specifically, a 9 × 9 grid of 3d corrections was defined for each product and solved for 

simultaneously for all products as a subset of the elements in the WLS solution vector 𝛿𝑋 using the 

alternate and theoretically optimal solution approach described earlier.  Since there were 10 products, 

each with correction grids containing 81 3d corrections and each associated with a total of 45 

measurements that are also associated with the other 9 products, 𝛿𝑋 is a 3(10)(81 + 45) × 1 vector or 

a 3(1260) × 1 vector.  Recall that with the alternate solution approach, 𝛿𝑋 contains 3d corrections 

associated with both the grids and the conjugate measurements. 

Check points for the evaluation of performance 

There was also a 8 × 8 grid of check points defined for each product that represented arbitrary locations 

in the product to be corrected for errors by subsequent interpolation of the surrounding grid corrections 

following the WLS solution.    

The check points also had known locations (“ground-truth”) which were also common across all products 

and not used (solved for) in the WLS solution.  Each check point was located at one-fourth the interior x 

coordinate and one-fourth the interior y coordinate of the corresponding grid correction cell.  Of course, 

since results were based on simulation, the true locations of all geolocations were also known, including 

those corresponding to the correction grids themselves allowing for the computation of both pre-solution 

and post-solution errors for performance assessment.  All a priori or pre-solution errors for each product 

were simulated consistent with the a priori predicted accuracy represented in the product’s MGRF, 

including those corresponding to the check points.    

See reference [2] for further details regarding fusion and this example, including timing (throughput) 

results and well as ensemble performance results taken over 100 independent realizations of the product.  

This reference also includes an overview of the MGRF concept. 

Results 
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Figures E.3.2.5-1 through E.3.2.5-4 present a subset of solution results corresponding to this example (one 

realization).  Figure E.3.2.5-1 presents the pre-solution 3d correction grid errors for products 2 through 4 

and their a priori sigma envelopes or predicted accuracy.  Figure E.3.2.5-2 presents the corresponding 

post-solution results – note the reduction in the range of the y-axis consistent with the improvement in 

predicted accuracy and the smaller errors relative to the pre-solution results.  This improvement is as 

expected for each of the products due to the fusion or influx of independent information from the other 

nine products.  This is particularly true for the improvements in product 3 due to its larger initial 

uncertainty relative to the other nine products.   

In addition, a posteriori solution accuracy and corrected product accuracy are consistent with a posteriori 

errors, as desired.  Also, as a reminder, only information from multiple products was used to correct the 

products; no External Data was used, such as ground control points. 

 

Figure E.3.2.5-1: Pre-solution grid correction errors (solid line) and sigma envelopes (dashed lines) for 

products 2 through 4. 
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Figure E.3.2.5-2: Post-solution grid correction errors (solid line) and sigma envelopes (dashed lines) for 

products 2 through 4; note y-axis scale change relative to Figure E.3.2.5-2  

In both Figures E.3.2.5-1 and E.3.2.5-2, results were presented for products 2 through 4 only in order to 

keep the plots of reasonable size.   In particular, the 3d components on the plot’s x-axis correspond to the 

81 3d grid corrections for product 2 in the solution vector, followed by the 81 3d grid corrections for 

product 3 in the same solution vector, and followed by the 81 3d grid corrections for product 4 in the 

same solution vector.  The grid corrections for each product are contained in the solution vector in row-

major order.  

Note: the more “deterministic oscillations” in the solution results between adjacent grid points in the 

same product occur when a new row in the correction grid is applicable with a corresponding sudden 

change in the a priori correlation between adjacent grid points.  This is particular apparent for the z error 

(red) of product 3 in Figure E.3.2.5-1, i.e., for components numbered 82 through 162. 

Figure E.3.2.5-3 presents both the pre-solution and the post-solution horizontal (x and y) errors for the 

grid of check points in product 3.  Post-solution errors are significantly smaller than pre-solution errors as 

expected.    The largest horizontal error vector was blue with a magnitude of 8.8 meters corresponding to 

“sf=8.8” in the title of the automatically scaled 2d quiver plot. 
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Figure E.3.2.5-3: Pre-solution (blue) and post-solution (red) check point horizontal (x and y) errors for 

product 3; check-points located in horizontal grid across the product’s AOI or “footprint” with 

corresponding grid row/column specified in plot. 

The similarity or spatial correlation of a priori (pre-solution) errors across the AOI is readily seen via the 

blue arrows in the above plot – the closer the check points the greater the similarity of error.  If the a 

priori correlation (spdcf) were specified with very high correlation (e.g., 𝐷 very large) instead of the 

reasonable values that were specified, the blue arrows would approach a common 2d bias, i.e., same 

direction and magnitude; if specified with very low correlation (e.g., 𝐷 very small), the blue arrows would 

appear random (uncorrelated) and would point in random directions with random magnitudes 

constrained by their a priori sigmas.  Of course, the degree of a priori correlation is also relative to the size 

(spacing) of the correction grid which also dictates the size of the check point grid in this example. 

Figure E.3.2.5-4 presents both the pre-solution and the post-solution horizontal relative errors between 

common check points in products 2 and 4.  The fusion process ensures consistent geolocations across 

products as illustrated by the reduction of the post-solution relative errors as compared to the pre-

solution relative errors. 
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Figure E.3.2.5-4: Pre-solution (blue) and post-solution (red) check point relative horizontal errors between 

products 2 and 4; check-points located in horizontal grid across the products’ common AOI. 

Note that only horizontal errors are presented in both Figures E.3.2.5-3 and E.3.2.5-4 consistent with the 

use of 2d quiver plots in order that pre-solution spatial correlation can be readily seen via the similarity 

of near-by 2d error vectors or quivers.   

In summary, this example demonstrated improved product accuracy (smaller errors) with consistent 

predicted accuracy (sigmas) due to fusion, although the predicted accuracy was not included in all of the 

plots and did not include error ellipsoids in order to keep results somewhat brief.  In addition, as 

demonstrated with similar examples, an increase in the number of conjugate measurements and/or a 

decrease in their measurement error sigma and/or an increase in the a priori spatial correlation associated 

with a random field(s) will yield even smaller resultant errors and corresponding improved predicted 

accuracies.  Also, a more uniform spread for the locations of the conjugate measurements across the AOI 

instead of the random locations used in the simulation improves the results as well. The random locations 

were used primarily for the compilation of ensemble results as detailed in [2]. 

E.4 Concept of Operations using MGRF with examples 

This section of the appendix presents a recommended Concept of Operations for the representation of 

the predicted accuracy of a geolocation product based on MGRF.  It includes examples for insight; in 
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particular, simulation-based realizations or product “instances” of geolocation errors associated with each 

geolocation contained in a product.  Section E.4.1 presents the examples and Section E.4.2 presents the 

Concept of Operations.   

E.4.1 Examples of MGRF-based realizations of errors associated with instances of the product 

First, we give an example of specific instances or realizations of a product as they relate to geolocation 

errors and the MGRF.  By a product, we mean an arbitrary product from a specific type or class of products, 

for example, EO-based 3d Point Clouds generated based on specific sensor(s), generation process, date-

range, and/or a general AOI.  By a specific instance of the product or simply a specific product, we mean 

an actual instance of the product, i.e., a specific set of 3d geolocations with accompanying or associated 

metadata.  This metadata includes MGRF-based a priori statistics for the product prepared ahead of time, 

and typically tuned using sample statistics (accuracy assessment) from previous instances of the product 

that had associated ground truth available. 

Figures E.4.1-1 and E.4.1-2 present two different views of a realization of geolocation errors simulated 

consistent with an MGRF-based a priori model of errors.  The corresponding product AOI corresponds to 

a semi-rural landscape.  There were three partitions: the nominal partition, a partition corresponding to 

crop anomalies (the “circular” regions), and a partition corresponding to “melted roof-tops” (rectangular 

regions) – see Appendix G for further details. The simulation implemented Fast Sequential Simulation 

(FSS) for the generation of errors consistent with specified a priori statistics per TGD 2e (Monte Carlo 

Simulation). 

3d errors were generated, but only z errors are illustrated for clarity of the plots.  The errors (meters) are 

illustrated across a horizontal grid in the product’s AOI with 2 meter spacing between geolocations 

(thinned by a factor of 2), which represents a contiguous subset of the particular instance of the product.  

The actual geolocations are not presented, just their errors.   More specifically, the plots present z errors 

(meters) versus grid point, with 2 meters of horizontal spacing between grid points. 
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Figure E.4.1-1: Realization #1 of vertical errors as presented across a horizontal grid within the product’s 

AOI 

 

 

Figure E.4.1-2: Realization #1 of vertical errors as presented across a horizontal grid within the product’s 

AOI – an alternate view illustrating vertical errors and their spatial correlation (similarity) more clearly 
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Figures E.4.1-3 and E.4.1-3 present results for a different realization and over a different part of the 

product but using the same a priori statistics.  Note that geolocations associated with the non-nominal 

partitions are in different areas of the product AOI.   

 

Figure E.4.1-3: Realization #2 of vertical errors as presented across a horizontal grid within the product’s 

AOI 

 

Figure E.4.1-4: Realization #2 of vertical errors as presented across a horizontal grid within the product’s 

AOI - an alternate view illustrating vertical errors and their spatial correlation (similarity) more clearly 
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In general, errors associated with geolocations in non-nominal partitions are larger than those 

corresponding to the nominal partition.  Use of an MGRF and its predictive statistics allows the 

user/application to either compute a corresponding and applicable predicted accuracy for geolocations 

identified as corresponding to a particular partition, or if a particular partition is not identified, compute 

an applicable predicted accuracy that accounts for the a priori probability of all partitions and their 

different predicted accuracies. 

Figures E.4.1-5 and E.4.1-6 correspond to two different realizations of the product and applicable to the 

nominal partition only.  The a priori statistics common to these realizations is different than those 

common to the previous plots in order to better illustrate that concept of “bias”: 

The a priori mean-value of error is zero but each realization appears “bias-like”, i.e., has a significant non-

zero sample mean-value.  This is as expected due to the spatial correlation of errors within each product 

realization.  However, this “bias” varies between the two realizations in both sign and magnitude.  This is 

as expected and consistent with an a priori mean-value equal to zero and applicable to an arbitrary 

realization of the product, past or future. 

 

Figure E.4.1-5: Realization #3: z-errors corresponding to the nominal partition assumed applicable 

across the entire grid, with a mean-value of 0 meters, a standard deviation of 10 meters, and high 

spatial correlation 
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Figure E.4.1-6: Realization #4: z-errors corresponding to the nominal partition assumed applicable to the 

entire grid, with a mean-value of 0 meters, a standard deviation of 10 meters, and high spatial 

correlation 

See Figures B.4.1-1 and B.4.1.2 in Appendix B that illustrate similar concepts regarding “bias” as above 

but applicable to 2d image location errors in different realizations of an image instead of 1d vertical 

errors in different realizations of a geolocation product.  Partitions are not applicable in the “standard” 

(non-MGRF) predicted accuracy model for an image, but a nominal partition can be considered 

applicable to all image-locations, if so desired. 

Note: Most partitions in most products have an a priori mean-value of error equal to zero, i.e., equal the 

3 × 1 zero vector.  However, if a geolocation(s) of interest identified by the user/application 

corresponds to a specific partition 𝑖 with an a priori mean-value of error that is significantly different 

than zero and an a priori error covariance matrix about this mean-value, it is recommended that the 

mean-value be subtracted from the geolocations prior to their use.  If not subtracted, and if the user’s 

application also requires a covariance matrix relative to an assumed mean-value of error equal to zero 

(typical), it is recommended that the effects of the mean-value be “root-summed-squared” with the 

covariance matrix, i.e., the 3x3 matrix �̅��̅�𝑇 is added to the supplied covariance matrix prior to its use 

along with a mean-value now assumed to equal zero.   

E.4.2 Overview of Concept of Operations 
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The following presents an overview of the recommended Concept of Operations associated with the use 

of MGRF for the representation of the predicted accuracy of a geolocation product.  It assumes that the 

MGRF is part of a populated predicted accuracy model generated by the Quality Assessment 

Management/Analysis functions per the main body of this document and made available to an NSG user 

in the form of a corresponding file/report or equivalent metadata.  The following are applicable steps in 

the Concept of Operations: 

 Generate MGRF a priori statistics for the representation of the predicted accuracy for a type or 

class of a geolocation product of interest 

o Performed by the Quality Assessment Management/Analysis functions 

o Based on analysis and tuned using populated accuracy assessment model(s) 

corresponding to various instances of the product (realizations) corresponding to the  

same type or class of product 

o Place the MGRF in a populated predicted accuracy model and make available to the NSG 

 Generate a specific instance of the product 

o Performed by an External Data provider (or possibly a specific NSG program) 

 Down-stream user obtains the product (instance) directly or indirectly from the provider (e.g. a 

specific 3d Point Cloud) 

 User associates/obtains the corresponding MGRF contained in the populated predicted accuracy 

model or its equivalent metadata made available by the Quality Assessment Management 

function 

 As an option, the user then reviews the product and adjusts the a priori probability of 

occurrence of the various partitions accordingly 

 For the geolocation(s) in the product of interest to the user, appropriate MGRF a priori statistics 

are applied/computed per Section E.2 for corresponding predicted accuracies: 

o Either as arbitrary geolocation(s) in the product or geolocation(s) identified by the 

user/application as part of a specific partition in the product instance.  The latter allows 

for more specific (tailored) predicted accuracy for the geolocations of interest, i.e., 

conditional predicted accuracies based on a known partition. 

Figure E.4.2-1 presents a flow-chart of processing associated with the above Concept of Operations: 
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Figure E.4.2-1: Processing associated with the Concept of Operations involving the predicted accuracy of 

a 3d geolocation product; optional adjustment of the product not included 
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E.4.2.1  Alternate Concepts of Operations 

It is possible that an MGRF may also eventually be generated and placed in the corresponding metadata 

directly by a provider, thus, precluding the need for the Quality Assessment Management/Analysis 

functions to do so for some types of products.  If done this way, the provider may also adjust the a priori 

probability of occurrence for the various partitions based on the specific instance of the product.   

In addition, some providers that already generate a (non-MGRF) predicted accuracy model and include 

the corresponding metadata with the product, may want to consider expanding their model to include 

aspects of an MGRF.  One such model was discussed in Section 5.2.3.1 – the Generic Point Cloud Model 

(GPM).  As such, the use of MGRF partitions can conveniently represent the geolocation uncertainty 

(errors) of: 

 geolocations “not included” in the product, such as the tops of towers “cut-off” in an EO-derived 

3d Point Cloud; currently not practical using GPM if geolocations are included in the product but 

with truncated values for z, and not possible using GPM if geolocations (all 3 coordinates) are not 

explicitly included in the product 

 geolocations included in the product, such as building roof-top edges, that are too prevalent to 

realistically express their larger uncertainty with “extra” error specified on a per geolocation basis 

as required using GPM. 

E.4.2.2 Relationships of the MGRF with accuracy assessments and GPM 

Relationship with accuracy assessments 

As mentioned earlier, the contents of an MGRF are based on/tuned using accuracy assessments 

corresponding to multiple realizations of products from the same type or class of products.  The sample 

statistics contained in the accuracy assessments are categorized by applicable partition, which can range 

in number from 1 (nominal partition only) to 𝑛, depending on the type of class of product and its error 

characteristics. 

However, as described in Section E.2.2, the baseline MGRF approach defines Partition 1 as containing 

errors from Random Field 1 only, whereas all other Partitions 𝑖 > 1 contain errors from Random Field 1 

and additive errors from Random Field 𝑖.  Therefore, sample statistics corresponding to all partitions 

should be used together in order to estimate the predictive statics for each random field, which are then 

used via the equations of Section E.2.2 to estimate the predictive statistics for the partitions in the MGRF, 

which are of direct interest to the down-stream user.   

However, if the sample statistics corresponding to Partition 𝑖 > 1 clearly dominate (represent relatively 

significantly larger errors) those corresponding to Partition 1, as typical for many types or classes of 

products, the sample statistics for Partition 𝑖 alone reasonably represent the sample statistics for the 

corresponding Random Field 𝑖, for 𝑖 = 1, . . , 𝑛; hence, the predictive statistics of all partitions then follow 

per the equations of Section E.2.2.  
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In addition, reasonable approximations are typically applicable, which may also remove geometric 

dependencies associated with the sample statistics that are not applicable to the predictive statistics for 

arbitrary realizations of a product from the same general type or class of product.  For example, a sample 

error covariance matrix applicable to Partition 𝑖 might reasonably be mapped to a corresponding 

predictive error covariance matrix for Random Field 𝑖 as follows: 

𝑠𝑎𝑚𝑝𝑙𝑒 𝐶𝑖 = [
4 1.4 −1

1.4 6 −1.3
−1 −1.3 7.9

] →  𝐶𝑋𝑅𝐹𝑖
= [

5 0 0
0 5 0
0 0 8

],             (E.4.2.2-1) 

where the average of the sample x and y error variances (one-half the matrix trace or average eigenvalue) 

was used as the corresponding variances in the diagonal predictive covariance matrix, and where the 

sample z error variance was rounded-up for simplicity and in recognition that a finite number of samples 

were used to generate the sample error covariance matrix.  

Relationship with GPM 

As discussed in Section 5.2.3 of the main body of the document, GPM is preferred over the explicit use of 

an MGRF for the representation of predicted accuracy as well as adjustability of the product.  However, 

GPM requires simultaneous generation with the generation of explicit product (realization).  See reference 

[16] for a detailed description of GPM. 

Currently, GPM is almost always unavailable for products considered as External (Commodities) Data in 

the NSG and the use of MGRF is a realistic alternative.  However, there are explicit correspondences 

between the two approaches: 

 The adjustable parameters of MGRF described in Section E.3 are the recommended counterparts 

to the adjustable parameters in GPM 

 The errors in Random Field 1 of MGRF contain the systematic errors in the product that are 

adjustable, as well as “random” errors similar to sensor-mensuration errors (aka “unmodeled”) 

errors in GPM.  Partition 1 contains Random Field 1 only and is the nominal partition, i.e., is 

applicable to the majority of geolocations. 

 The errors in Random Field 𝑖 > 1 are included in Partition 𝑖 and represent additive “problem” 

errors that are similar to specifiable additive errors in GPM; however the latter are required to be 

non-spatially correlated and are specified on a per geolocation basis in GPM. 

 Both “unmodeled” errors and uncorrelated additive errors are required to be explicitly specified  

by a specified region and on a specified per geolocation basis, respectively, in GPM.  This is not 

required in MGRF. 

 

There are actually two variations of GPM: GPM (sensor-space) and GPM (ground-space).  The former 

represents uncertainty in sensor-space (sensor pose, etc.) and the latter in ground-space using a grid of 

“anchor points” similar to a correction grid for product adjustability with MGRF.  However, the anchor 

point covariance matrix is full with non-identical (in general) 3x3 anchor point covariance matrices down 

its diagonal.  This covariance matrix corresponds to errors consistent with a non-homogeneous random 
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field and is computed during the product generation using information not available outside of this 

process; hence, the use of MGRF and a correction grid for our applications of interest.  In addition, 

MGRF includes the concept of partitions, not currently available with GPM. 

E.5 Recommended MGRF content-format associated with a geolocation product 

The following is recommended for inclusion in the product’s metadata or the corresponding Predicted 

Accuracy file/report.  It is used by the “down-stream” user/application to represent the predicted 

accuracy of geolocations in the product. 

Required Content 

Top-level parameters: 

𝑘: the dimension of modeled geolocation error, 1 ≤ 𝑘 ≤ 3; their corresponding identities: 

x-error, y-error, and/or z-error; identification of the Local Tangent Plane coordinate system which 

they reference                 

𝑛: the number of MGRF partitions and random Fields, where 1 ≤ 𝑛 ≤ 10 (tbr)         

A description/probability of occurrence for Partition 𝒊, for 𝒊 = 𝟏. . , 𝒏: 

Description: textual description of Partition 𝑖 

𝑝𝑖: the a priori probability of occurrence; the probability that an arbitrary geolocation in the 

product is associated with partition 𝑖, where 𝑝𝑖 > 0 and ∑ 𝑝𝑖
𝑛
𝑖=1 = 1  

A statistical description of Random Field 𝒊, for 𝒊 = 𝟏, . . , 𝒏: 

�̅�𝑅𝐹𝑖
: the 𝑘 × 1 mean-value of geolocation error            

𝐶𝑋𝑅𝐹𝑖
: the 𝑘 × 𝑘 covariance matrix of geolocation error           

𝑠𝑝𝑑𝑐𝑓𝑅𝐹𝑖
:       the 𝑘 × 1 vector-valued strictly positive definite correlation function; specifies the 

spatial correlation between the error in two geolocations as a function of ∆𝑋 between the 

geolocations ;  𝑠𝑝𝑑𝑐𝑓𝑅𝐹𝑖
 is a member of the CSM 4-parameter family of spdcf and specified by 4 

parameters for each component 

All of the above allow for the computation of all derived statistics by the “down-stream” user 

(application) per the equations of Section E.2.2, including probability density functions that completely 

characterize all relevant errors, including relative errors. 

Highly Recommended Content: Scalar Accuracy Metrics 

Predicted Accuracy for Partition 𝒊, for 𝒊 = 𝟏, . . , 𝒏: 
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𝐶𝐸𝑋𝑋𝑖  Circular Error at probability-level 𝑋𝑋 for horizontal geolocation error for 

an arbitrary geolocation associated with partition 𝑖, for both  𝑋𝑋 = 90% 

and 99% 

𝐿𝐸𝑋𝑋𝑖  Linear Error at probability-level 𝑋𝑋 for vertical geolocation error for an 

arbitrary geolocation associated with partition 𝑖, for both  𝑋𝑋 = 90% and 

99% 

Predicted Accuracy for Product (Partition Unknown): 

𝐶𝐸𝑋𝑋 Circular Error at probability-level 𝑋𝑋 for horizontal geolocation error for 

an arbitrary geolocation associated with partition 𝑖, for both  𝑋𝑋 = 90%, 

99%, and 99.9% 

𝐿𝐸𝑋𝑋 Linear Error at probability-level 𝑋𝑋 for vertical geolocation error for an 

arbitrary geolocation associated with partition 𝑖, for both  𝑋𝑋 = 90%, 

99%, and 99.9% 

Relative Accuracy for Partition 𝒊, for 𝒊 = 𝟏, . . , 𝒏: 

𝑟𝑒𝑙_𝐶𝐸𝑋𝑋𝑖𝑗  Circular Error at probability-level 𝑋𝑋 for horizontal geolocation error for 

an arbitrary geolocation associated with partition 𝑖, for both  𝑋𝑋 = 90% 

and 99%.  Further categorized by distance bin 𝑗 also defined in metadata 

(not included in this description). 

𝑟𝑒𝑙_𝐿𝐸𝑋𝑋𝑖𝑗  Linear Error at probability-level 𝑋𝑋 for vertical geolocation error for an 

arbitrary geolocation associated with partition 𝑖, for both  𝑋𝑋 = 90% and 

99%. Further categorized by distance bin 𝑗 also defined in metadata. 

Relative Accuracy for Product (Partition Unknown): 

𝑟𝑒𝑙_𝐶𝐸𝑋𝑋 Circular Error at probability-level 𝑋𝑋 for horizontal geolocation error for 

an arbitrary geolocation associated with partition 𝑖, for both  𝑋𝑋 = 90%, 

99%, and 99.9%.  Further categorized by distance bin 𝑗 also defined in 

metadata. 

𝑟𝑒𝑙_𝐿𝐸𝑋𝑋 Linear Error at probability-level 𝑋𝑋 for vertical geolocation error for an 

arbitrary geolocation associated with partition 𝑖, for both  𝑋𝑋 = 90%, 

99%, and 99.9%.  Further categorized by distance bin 𝑗 also defined in 

metadata. 

Recommended Content: Mean-Values and Covariance Matrices for Partition 𝒊, for 𝒊 = 𝟏, , . 𝒏 

�̅�𝑃𝑎𝑟𝑡𝑖
 the 𝑘 × 1 mean-value of geolocation error for Partition 𝑖     

𝐶𝑋𝑃𝑎𝑟𝑡𝑖
 the 𝑘 × 𝑘 covariance matrix of geolocation error for Partition 𝑖           
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Recommended Content: Mean-Values and Covariance Matrices for Product (partition unknown)  

�̅� the 𝑘 × 1 mean-value of geolocation error      

𝐶𝑋 the 𝑘 × 𝑘 covariance matrix of geolocation error   

Optional: specification of a Random Field-to-Partition Mapping (Section E.2) if the default (baseline) 

mapping is not applicable; in which case, the number of partitions and number of random fields no 

longer need to be identical.  This optional specification is recommended for a more general/flexible 

design for MGRF metadata content.  

Optional: Explicit CE/LE figures in accompanying files similar to Figure E.2.5-1 for more information 

regarding the distribution of errors corresponding to geolocations in different partitions – provides for 

additional insight to the down-stream user. 

Optional: A flag indicating that an accompanying file presents an optional vector or raster map of the 3d 

Product with corresponding geolocations associated with Partition 𝑖, 𝑖 = 1, . . , 𝑛, explicitly identified, and 

where one and only one partition corresponds to each geolocation.  Identification is typically via 

rendered geolocation boundaries. 

Metadata containing all of the recommended contents presented above is of relatively small size (bytes). 

A simple example of Metadata content is presented in Section E.5.1 that follows: 

E.5.1 Metadata example 

The following is an example of metadata corresponding to an MGRF representation of the predicted 

accuracy of a 3d geolocation product that specifically illustrates the metadata content listed above for a 

somewhat non-complicated case.  The case could correspond to a priori statistics of a somewhat “simple” 

form due to a limited number of corresponding accuracy assessments used for the derivation of these 

statistics.  On the other hand, the somewhat “simple” form may be due to the nature of the 3d geolocation 

product itself and generated based on numerous accuracy assessments. 

The following lists the metadata content without use of a specific “file” format, the latter not in the scope 

of this document.  Mathematical symbols are included as well that reference previous sections of the 

appendix, and would not be explicitly included in the actual metadata.  Specific numbers are notational 

and for the purpose of illustration only. 

All applicable units are meters (m), unless specifically stated otherwise.  The following includes required 

data and recommended data (+) per Section E.5.  Recommended data, if not included, can be computed 

by the “down-stream” user using the required data and implementation of the equations/algorithms of 

Section E.2.  However, this does place additional requirements on the user.  In addition, even when the 

recommended data is included, the user may want to compute additional data, such as scalar accuracy 

metrics at additional probability levels and/or relative scalar accuracy metrics at additional distance bins. 
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Finally, recall that the baseline MGRF approach assumes that errors in geolocations associated with 

Partition 1 correspond to errors contained in Random field 1, and errors in geolocations associated with 

Partition 𝑖 > 1 correspond to a sum of errors, one contained in random Field 1 and one contained in 

Random Field 𝑖. 

 

Metadata (required) 

The dimension of geolocation errors: 𝑘 = 3  

corresponding to 𝜖𝑥, 𝜖𝑦, and 𝜖𝑧 

 

The number of partitions:  𝑛 = 2 

Partition 1: 

Description:    “all geolocations not in partition 2”, aka “nominal partition” 

Partition probability of occurrence     𝑝1 = 0.85 

Partition 2: 

Description:                                    “all geolocations corresponding to building roof-top melted edges”  

Partition probability of occurrence     𝑝2 = 0.15 

Random field 𝟏: 

Error mean value:   �̅�1 = [
0
0
0
] m 

Error covariance matrix:   𝐶𝑋1
= [

12 0 0
0 12 0
0 0 22

] m-squared 

Spdcf parameters:                                      {𝐴 = 0.9 (unit-less), 𝛼 = 0 (unit-less),  𝛽 = 0 (unit-less), 

𝐷 = 5000 m} * 

Random field 2: 

Error mean value:   �̅�2 = [
0
0

−3
] m 

Error covariance matrix:   𝐶𝑋2
= [

32 0 0
0 32 0
0 0 42

] m-squared 

Spdcf parameters:                                     {𝐴 = 0.9 (unit-less), 𝛼 = 0 (unit-less),  𝛽 = 0 (unit-less), 

𝐷 = 500 m}* 
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Metadata (recommended; derived from the above required metadata) 

 

Partition 𝟏: 

Error mean value:   �̅�1 = [
0
0
0
] m 

Error covariance matrix:   𝐶𝑋1
= [

12 0 0
0 12 0
0 0 22

] m-squared 

Partition 2: 

Error mean value:   �̅�2 = [
0
0

−3
] m 

Error covariance matrix:   𝐶𝑋2
= [

10 0 0
0 10 0
0 0 20

] m-squared 

 

Arbitrary geolocation in product (partition unknown): 

Error mean value:   �̅� = [
0
0

−0.45
] m 

Error covariance matrix:   𝐶𝑋 = [
2.35 0 0
0 2.35 0
0 0 7.5475

] m-squared 

Partition 1 (scalar accuracy metrics provided in the following tables): 

 

 

Partition 𝟐: 

CE90 = CE99 = LE90 = LE99 =

2.1 3 3.3 5.1

Scalar Accuracy Metrics (m) for partiton 1

distance (m) < = relCE90 <= relCE99 <= relLE90 <= relLE99 <=

50 1 1.4 1.5 2.4

500 1.3 1.8 2 3.1

Scalar Relative Accuracy Metrics (m) for partiton 1
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Arbitrary geolocations in product (note extra columns corresponding to probability level 99.9%): 

 

 

Comment 1 

**Since there is only one entry {…} under spdcf parameters for each random field, the corresponding spdcf 

is assumed applicable (common) to all three error components for this example.  In addition, the spdcf is 

assumed to correspond to the “CSM four parameter” family of spdcf; as such, based on the specified 

parameters above, the specific spdcf equals: 

𝐴𝑒−𝑑/𝐷 , where 𝑑 is horizontal distance, the parameter 𝐴 satisfies 0 < 𝐴 ≤ 1, the parameter 𝐷 (horizontal 

distance constant, meters)) satisfies 0 < 𝐷, and the other two parameters 𝛼 and 𝛽 are set to zero in this 

example, and thus, have no effect.   

Note that the specified value of 𝐴 is the corresponding maximum value for the correlation coefficient 

between two errors in the same random field; hence, directly affects the corresponding minimum value 

for relative predicted accuracy between the geolocations, i.e., 𝐴 < 1 prevents the relative error 

covariance matrix from approaching zero when the horizontal distance 𝑑 approaches zero, as desired in 

all practical applications.  Of course, by definition, the correlation coefficient equals 1 and the relative 

error covariance matrix equals zero when the distance d is identically equal to zero, i.e., the two 

geolocations (errors) are one in the same.   

Based on the above and general flexibility, the “CSM four parameter” family of spdcf is recommended for 

use.  Specified non-zero values of the parameters 𝛼 and 𝛽 also allow for the specification of a correlation 

minimum value other than zero for large values of the distance 𝑑 and the modification of the correlation 

function’s shape to some degree, respectively. 

CE90 = CE99 = LE90 = LE99 =

6.8 9.6 8.8 13.4

Scalar Accuracy Metrics (m) for partiton 2

distance (m) <= relCE90 <= relCE99 <= relLE90 <= relLE99 <=

50 4.1 5.7 4.2 6.7

500 7.6 10.7 7.9 12.3

Scalar Relative Accuracy Metrics (m) for partiton 2

CE90 = CE99 = CE999 = LE90 = LE99 = LE999 = 

3.1 7.4 10 4.2 9.8 14.1

Scalar Accuracy Metrics (m) for arbitrary geolocation

distance (m) <= relCE90 <= relCE99 <= relCE999 <= relLE90 <= relLE99 <= relLE999 <=

50 4.2 7.7 10.1 3.6 8.4 11.9

500 4.4 8 10.5 3.9 8.9 12.4

Scalar Relative Accuracy Metrics (m) for arbitrary geoloction
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In addition, recall the Partition 1 contains errors from Random Filed 1 only; hence the spdcf for Random 

Field 1 is also directly applicable to errors in geolocations associated with Partition 1.  And because 

Partition 2 contains errors from both Random Field 1 and Random Field 2, their spdcfs are jointly but 

separately applicable to errors in geolocations associated with Partition 2.  However, since Random Field 

2 errors are significantly larger than those from Random Field 1, the former’s spdcf influences the relative 

errors in Partition 2 the most. 

Comment 2 

* Relative accuracy distance bins refer to a range of horizontal distance between two 3d geolocations in 

the same partition.  For example, distance bin 1 may be specified in the metadata as corresponding to 

two geolocations separated less than 50 meters, and distance bin 2 between 50 and 500 meters. 

Comment 3 

See Appendix F for further examples of metadata; more specifically, the various derived statistics 

corresponding to a specified set of required statistics for underlying partitions.  It includes corresponding 

plots for scalar predicted accuracy metrics (both CEXX and LEXX) corresponding to an arbitrary geolocation 

in the product.  The above example was generated by MATLAB pseudo-code, which is also included in 

Appendix F. 

E.6 Summary 

This appendix has described both the theoretical aspects of an MGRF and its ability to represent the 

predicted accuracy corresponding to a 3d geolocation product in a rigorous yet practical manner.  The 

MGRF takes into account that geospatial accuracy can vary over different “parts” or partitions of the 

product.   

The user/application of the product may or may not be able to associate geolocations of interest with a 

particular partition when multiple partitions are applicable.  If not, the predicted accuracy can be 

computed in a rigorous manner corresponding to an arbitrary geolocation, i.e., a geolocation with its 

associated partition unknown.  When a geolocation of interest can be associated with a particular 

partition, as is typical, a more detailed “high-fidelity” predicted accuracy can be computed instead.   

The above allows the “down-stream” user/application of the product to make informed decisions as well 

as optimal use of the product due to available predicted accuracies.  

Finally, a significant number of mathematical derivations were included in this appendix for background, 

but their understanding is not required for applications of an MGRF.  In particular, examples were also 

presented, including the contents of MGRF metadata or its equivalent.  Appendix F presents pseudo-code 

for their generation, including various CE and LE scalar accuracy plots. 
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 Pseudo-code for the generation of MGRF derived statistics 

This appendix presents non-optimized MATLAB code (“pseudo-code”) for the generation of MGRF derived 

statistics corresponding to a specified set of MGRF required statistics.  This pseudo-code was referenced 

in Section 5.3.3.3 of the main body of this document and also in Appendix E. 

The derived statistics include those recommended for inclusion in corresponding 3d geolocation product 

metadata, as well as other derived statistics.  The pseudo-code is simple and non-optimized.  For example, 

specified statistics are “hard coded” but are easily changed.   They consist of the number of partitions in 

the MGRF and their probability of occurrence, and for each of the underlying random fields, its 1x3 mean-

value of 3d error, 3x3 covariance matrix of 3d error, and various parameters that specify its strictly positive 

definite correlation functions – one for the spatial correlation of horizontal errors and one for the spatial 

correlation of vertical errors. 

Derived statistics include the scalar predicted accuracy metrics CE and LE at various probability levels XX 

corresponding to an arbitrary geolocation in each specific MGRF partition as well as corresponding to an 

arbitrary geolocation in the overall MGRF (product) when the geolocation’s partition is unknown.  Both 

sets also include CE/LE corresponding to absolute and relative predicted accuracies, the latter also 

applicable to different specifiable distances between geolocations. 

Pseudo-code output not only includes the above, but CE/LE plots as well for arbitrary geolocations in the 

overall MGRF or product.  The CE plots include CE90, CE99, and optionally CE999 (probability equals 

99.9%) circles, as well as a subset of 2000 random horizontal error samples in correct proportion from 

each partition used by the Monte Carlo generation method to compute CEXX for an arbitrary geolocation 

in the product as described in Section E.2.5 of Appendix E.  The plots also optionally include the CE90 circle 

corresponding to geolocations exclusively from partition 1 for comparison.  Output also includes similar 

LE plots corresponding to vertical errors.  Figures F-1 presents an example of a CE plot and Figure F-2 an 

example of an LE plot, both corresponding to the same specified set of required statistics for the MGRF 

included as part of the pseudo-code output. 
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Plot examples: 

 

Figure F-1: CEs corresponding to an arbitrary geolocation in the MGRF or product (circle radii in meters), 

including a total of 2000 random samples of horizontal error corresponding to each partition in correct 

proportion as colored dots, e.g., green dots correspond to partition 3; also includes CE90 for partition 1 

(red) for comparison  

Note the increase in CE90 for an arbitrary geolocation in the product (blue circle) relative to an arbitrary 

geolocation in partition 1 (red circle) which is due to the combined effects of all 3 partitions and the fact 

that error statistics for partitions 2 and 3 were specified greater than for partition 1 (see printout example 

below for details). 
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Figure F-2: LEs corresponding to arbitrary geolocation (horizontal lines in meters), including 2000 

random samples of vertical error in each underling partition as colored dots along vertical lines; also 

included is LE90 for partition 1 (red horizontal line) 

In addition and corresponding to the same specified set of required statistics, Figure F-3 presents a plot 

of the spdcf for vertical errors for random field 1 for insight into the form of a spatial correlation function.   

A different spdcf corresponding to either horizontal errors and/or a different partition can be plot instead 

by a simple modification of the pseudo-code. 
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Figure F-3: Spdcf for vertical errors in partition 1; its value 𝜌 at (∆𝑥, ∆𝑦) = (0,0) is equal to 1.0 by 

definition, but is less than or equal to 0.9 at all other values of (∆𝑥, ∆𝑦) for this particular spdcf  

The spdcf corresponding to Figure 3 is an isotropic “CSM four parameter” spdcf defined by four 

parameters:  {𝐴 = 0.9 (unit-less), 𝛼 = 0 (unit-less),  𝛽 = 0 (unit-less), 𝐷 = 2000 m }, where correlation 

𝜌 = 𝐴(𝛼 +
(1−𝛼)(1+𝛽)

𝛽+𝑒𝑑/𝐷) ) and 𝑑 = √∆𝑥2 + ∆𝑦2.   

In general, the allowed ranges for the four parameters are: 0 < 𝐴 ≤ 1, 0 ≤ 𝛼 < 1, 0 ≤ 𝛽 ≤ 10, and 0 <

𝐷 per Section of 5.8.3.1 of TGD 2a.  Note that the value of 𝐴 specifies the maximum value of the spdcf at 

a non-zero distance, the value  𝛼𝐴 specifies the minimum value or “floor”, the distance constant 𝐷 dictates 

the general rate at which correlation decreases with distance, and the parameter 𝛽 modifies the 

function’s shape somewhat. 

Detailed documentation of the computation of all of the derived statistics is included as comment 

statements in the pseudo-code. 

F.1 Printed output example 
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Specific derived statistics corresponding to the above case also include the following explicit printed 

outputs of the pseudo code.  The following includes some addition descriptors (%) for this appendix only 

– see the pseudo code for detailed definitions of the output. 

>> TGD_2f_compute_derived_a_priori_stats_August_24_2018 

plot_flag = 1     1     1     1     %plotting options 

p_levels =0.9000    0.9900    0.9990     %probability levels for scalar accuracy metrics (CEXX, etc.) 

n_dist =3 %number of distances for computed relative accuracies 

dist =0    50   500 %corresponding distances in meters 

case_flag =1     0     0     0     0     0     0 %case flag – specified case presented below 

 

%required MGRF a priori predictive statistics (hard coded inputs via case flag): 

n =3     % number of specified partitions in MGRF 

part_p =0.6000    0.2000    0.2000 %partition probabilities of occurrence 

mean_rf = %random field (rf) mean values: first row the 1x3 mean value (x,y,z) for rf 1, etc. 

     0     0     0 

    -2    -2    -2 

     2     2     2 

cov_rf =           %random field 3x3 covariance matrices: first 3 rows the covariance matrix for rf 1, etc. 

     2     0     0 

     0     2     0 

     0     0     2 

     9     8     0 

     8     9     0 

     0     0     9 

    16     0     0 

     0    16     0 

     0     0    16 

 

spdcf_hor_rf = % random field spdcf spatial correlation function for horizontal error (both x and y) - 4 

defining parameters: first row corresponds to the spdcf for rf 1, etc. 

 1.0e+03 * 

    0.0009         0         0    2.0000 
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    0.0009         0         0    1.0000 

    0.0009         0         0    0.2000 

 

spdcf_vert_rf =  % as above but for vertical errors 

   1.0e+03 * 

    0.0009         0         0    2.0000 

    0.0009         0         0    1.0000 

    0.0009         0         0    0.2000 

 

%Computed for info only: 

cor_h = %corresponding computed correlation coefficient for horizontal errors for info only: row 

1 corresponds to the first distance and the three random fields, etc. 

    0.9000    0.9000    0.9000 

    0.8778    0.8561    0.7009 

    0.7009    0.5459    0.0739 

cor_v =  %as above but for vertical errors 

    0.9000    0.9000    0.9000 

    0.8778    0.8561    0.7009 

    0.7009    0.5459    0.0739 

 

%Derived outputs (derived statistics recommended for metadata): 

mean =   partition (part) mean values: first row the 1x3 mean value for part 1, etc. 

     0     0     0 

    -2    -2    -2 

     2     2     2 

cov = %partition (part) 3x3 covariance matrices: first 3 rows the covariance matrix for part 1, 

etc. 

     2     0     0 

     0     2     0 

     0     0     2 

    11     8     0 

     8    11     0 

     0     0    11 

    18     0     0 

     0    18     0 
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     0     0    18 

      

mean_arb =0     0     0   %1x3 mean value of error for arbitrary geolocation in product  

     (partition unknown) 

cov_arb =    % 3x3 covariance matrix for error in arbitrary geolocation 

    8.6000    3.2000    1.6000 

    3.2000    8.6000    1.6000 

    1.6000    1.6000    8.6000 

 

CE_partitions =  % CE for each probability level corresponding to a geolocation in the 

specified partition; row 1 is CE90, CE99, CE999 for partition 1, etc. 

    3.0340    4.2849    5.2650 

    8.7144   13.1264   16.3989 

   10.0399   14.0608   17.1041 

 

LE_partitions =     % as above except for LE 

    2.3273    3.6513    4.6672 

    6.3669    9.7365   12.2479 

    7.7169   11.9749   15.1729 

 

CE_arbitrary =7.1621   12.1980   15.6668       % CE for each probability level for an arbitrary geolocation in  

       product (partition unknown) 

LE_arbitrary =    4.9524    9.6303   13.107       % as above except for LE 

 

distance =0 % distance for following relative predicted accuracy scalar accuracy metrics, i.e.,  

for two geolocations the specified distance apart 

relCE_partitions = % rel CE for three probability levels for each partition; first row is CE90, CE99, 

CE999 for partition 1, etc. 

    1.3562    1.9163    2.3485 

    3.3141    5.0977    6.4688 

    4.0724    5.7508    7.0333 

 

relLE_partitions =          % as above except for LE 

    1.0405    1.6271    2.0898 

    2.4430    3.8207    4.8879 

    3.1247    4.8903    6.2581 
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distance =50 

relCE_partitions = 

    1.5016    2.1252    2.6070 

    3.9246    6.0535    7.7306 

    6.8064    9.6225   11.8026 

 

relLE_partitions = 

    1.1505    1.8008    2.3039 

    2.8893    4.5252    5.7670 

    5.2195    8.1644   10.4464 

 

distance =500 

relCE_partitions = 

    2.3474    3.3150    4.0754 

    6.8802   10.6244   13.4603 

   11.9085   16.8412   20.6149 

 

relLE_partitions = 

    1.7985    2.8198    3.6059 

    5.0312    7.8962   10.0238 

    9.1240   14.2668   18.2558 

 

distance = 0 %distance for following relative predicted scalar accuracy metrics, i.e. for two 

geolocations the specified distance apart 

relCE_arb = 7.1685   11.7935   15.7075    %rel_CE for each probability level for arbitrary geolocations in  

 product (partition unknown)  

relLE_arb = 5.0623    9.4545   13.1426    %same as above for rel_LE 

distance =50 

relCE_arb = 7.2662   11.8491   15.7239 

relLE_arb = 5.1663    9.4974   13.1755 

distance = 500 

relCE_arb =7.8078   12.6826   16.7958 
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relLE_arb =5.5705   10.2175   14.2452 

>> 

F.2 Pseudo-code 

%”TGD_2f_compute_derived_a_priori_stats_August_24_2018” 

  

%24 August 2018 

  

%This program computes derived statistics from a priori statistics that are  

%input; the a priori statistics specify an MGRF for the representation of  

%Predicted Accuracy for a 3d Geolocation Product and are required in its  

%metadata or an equivalent file.   

  

%Ancillary plots of scalar accuracy metrics are also generated, if so specified.   

%A plot of a strictly positive definite %correlation function (spdcf) can also  

%be specified for general insight. 

  

%In general, there are n partitions and n underlining random fields making up  

%the MGRF.  Each geolocation in the product (realization) is associated with  

%one and only one partition. 

  

%Partition 1 is associated with geolocations that have errors represented by  

%random field 1; this is characterized as  

%“partition 1 ‘contains’ random field %1”.   

%Partition i>1 contains both random field 1 and random field i, i.e., is  

%the sum of two independent (uncorrelated) errors, one from random field 1 and  

%one from random field i.  Random field 1 contains product-wide systematic  

%errors, and random fields i>1 contains additive errors, typically much less  

%spatially correlated (systematic) than those in random field 1. 

  

%The following is “non-optimized” pseudo-code for convenience, where for  

%example, inputs are “hard coded” and their values not checked for validity. 

%Simply change the “hard coded” values for the desired case of interest. 

  

  

%DEFINE and “read in” inputs: 

  

  

%plot option flag vector: 

plot_flag=zeros(1,4); 

  

%perform plots of CEXX and LEXX (XX nominally =90, 99) for arbitrary  

%geolocation in product (partition unknown):  

plot_flag(1,1)=1; 

  

%include CE999 and LE999 (99.9%)in above plots: 

plot_flag(1,2)=1; 

  

%include partition 1's CE90 and LE90 in above plots for comparison: 

plot_flag(1,3)=1; 

  

%include independent plot of random field 1's vertical error spdcf associated  

%with predicted relative accuracy for general info regarding spdcf functions;  
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%because the errors associated with geolocations in random field 1 are the  

%errors in partition 1, this plot corresponds to the spdcf of partition 1  

%as well: 

plot_flag(1,4)=1; 

  

plot_flag  %print value of plot flag  

  

  

%probability levels XX for scalar accuracy metrics CEXX and LEXX (0<values<1): 

p_levels=[0.9 0.99 0.999]  

%some later comment statements in the code assume that these particular  

%nominal values are applicable for convenience 

  

%nominal number of distances and their nominal values (meters) for relative  

%accuracy computations: 

n_dist=3    

dist=[0 50 500]  %where square bracket [ ]  corresponds to “define” in MATLAB 

  

  

  

%The following defines the MGRF with a priori statistics.  These consist of  

%(1)the number of random fields (n) which is the same as the number of  

%partitions in the MGRF (product), (2) the probability of occurrence for  

%each partition, and (3) the defining predictive statistics for each random  

%field: 

  

%More specifically, there are 7 different cases or experiments defined below  

%via %"hard coding" for convenience, many of them corresponding to experiments  

%documented in Appendix D of TGD 2f (External Data and its Quality Assessment)". 

  

%Set the corresponding case_flag appropriately for the case of interest or  

%redefine a particular case as desired: 

  

case_flag=[1 0 0 0 0 0 0] 

  

if(case_flag(1)==1) %case #1: 

  

%number of partitions in MGRF: 

  

n=3 

  

%define and read in a 1xn vector of partition probabilities (must sum to 1) 

  

part_p=[.6, 0.2, 0.2] 

  

%read in n rows of random field 1x3 mean-values; first row corresponds to 1x3  

%mean-value for random field 1, etc.: 

  

mean_rf=[0 0 0; -2 -2 -2; 2 2 2] 

  

%read in 3*n rows of random field 3x3 covariance matrices; first 3 rows  

%correspond to 3x3 covariance matrix for random field 1, etc.:  

  

cov_rf=[2 0 0; 0 2 0; 0 0 2; 9 8 0; 8 9 0; 0 0 9; 16 0 0; 0 16 0; 0 0 16] 

  

%above entry must be such that all random field covariance matrices are  
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%valid (symmetric and positive definite (eigenvalues > 0)). 

  

%read in n rows of random field spdcf parameters for hor (x,y) errors; row 1  

%corresponds to 1x4 vector of random field 1’s spdcf parameters, etc.: 

  

spdcf_hor_rf=[0.9 0 0 2000; 0.9 0 0 1000; 0.9 0 0 200] 

  

%same for vertical (z) errors: 

  

spdcf_vert_rf=[0.9 0 0 2000; 0.9 0 0 1000; 0.9 0 0 200] 

  

end  %end case 1 test  

  

if(case_flag(2)==1) %extreme experiment – partition 2 low prob. but large  

                    %errors 

n=2 

part_p=[.95, 0.05] 

mean_rf=[0 0 0; 0 0 0] 

cov_rf=[1 0 0; 0 1 0;0 0 1;20^2 0 0;0 20^2 0;0 0 20^2] 

spdcf_hor_rf=[0.9 0 0 2000; 0.9 0 0 1000] 

spdcf_vert_rf=[0.9 0 0 2000; 0.9 0 0 1000] 

end 

  

if(case_flag(3)==1) 

n=2 

part_p=[.85, 0.15] 

mean_rf=[0 0 0; 0 0 -3] 

cov_rf=[1 0 0; 0 1 0;0 0 2^2;3^2 0 0;0 3^2 0;0 0 4^2] 

spdcf_hor_rf=[0.9 0 0 5000; 0.9 0 0 500] 

spdcf_vert_rf=[0.9 0 0 5000; 0.9 0 0 500] 

end 

   

if(case_flag(4)==1)   

n=3 

part_p=[.6, 0.2, 0.2] 

mean_rf=[0 0 0; 0 0 0; 0 0 0] 

cov_rf=[1 0 0; 0 1 0;0 0 1;3^2 0 0;0 3^2 0;0 0 3^2;5^2 0 0;0 5^2 0;0 0 5^2] 

spdcf_hor_rf=[0.9 0 0 2000; 0.9 0 0 200; 1 0 0 200] 

spdcf_vert_rf=[0.9 0 0 2000; 0.9 0 0 200; 0.5 0 0 200] 

end 

   

if(case_flag(5)==1)    

n=1 

part_p=[1] 

mean_rf=[-2 2 2] 

cov_rf=[2^2 0 0; 0 3^2 0;0 0 4^2] 

spdcf_hor_rf=[0.9 0 0 2000] 

spdcf_vert_rf=[0.9 0 0 100] 

end 

  

if(case_flag(6)==1)   

n=5 

part_p=[.51111, 0.1, 0.1, 0.1, 0.18889] 

mean_rf=[2 0 2; 0 0 0; 0 0 0; -2 -2 -2; 0 0 0] 

cov_rf=[1 0 0;0 1 0;0 0 1; 3^2 0 0;0 3^2 0;0 0 3^2; 5^2 0 0;0 5^2 0;0 0 5^2;... 

    1 0 0;0 1 0;0 0 1; 3^2 0 0;0 3^2 0; 0 0 4^2] 
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spdcf_hor_rf=[0.9 0 0 2000; 0.9 0 0 200; 0.9 0 0 200; 0.9 0 0 200; 0.9 0 0 200] 

spdcf_vert_rf=[0.9 0 0 2000; 0.9 0 0 200; 0.9 0 0 200; 0.9 0 0 200;... 

0.9 0 0 200] 

end 

  

if(case_flag(7)==1)   

n=3 

part_p=[.5, 0.25 0.25] 

mean_rf=[0 0 0; 5 5 0; -2 -3 0] 

cov_rf=[1 0 0;0 1 0;0 0 1; 0.5 0 0;0 0.5 0;0 0 0.5; 9 0 0;0 1 0;0 0 1] 

spdcf_hor_rf=[1.0 0 0 2000; 0.9 0 0 200; 0.9 0 0 200] 

spdcf_vert_rf=[0.9 0 0 2000; 0.9 0 0 200; 0.9 0 0 200] 

end  

  

%DEFINE later outputs corresponding to errors in geolocations corresponding  

%to specific partitions and to the general product (partition unknown) -  

%outputs are “print only” in this pseudo-code: 

  

  

%mean_arb: 1x3 vector of geolocations errors for arbitrary geolocation 

  

%cov_arb: 3x3 covariance matrix of geolocation errors for arbitrary  

%geolocation 

  

%CE_partitions: n rows of 1x3 CEs at the three different probability levels  

%for each of the n partitions 

  

%LE_partitions: n rows of 1x3 LEs at the three different probability  

%levels for each of the n partitions 

  

%CE_arbitrary: a 1x3 vector of CEs at the three different probability levels  

%applicable to an arbitrary geolocation in the product 

  

%LE_arbitrary: 1 1x3 vector of LEs at the three different probability levels  

%applicable to an arbitrary geolocation in the product 

  

%relCE_partitions: n rows of 1x3 relative CEs at the three different  

%probability levels for each of the n partitions; computed for each of the  

%n_dist distances 

  

%relLE_partitions: n rows of 1x3 relative LEs at the three different  

%probability levels for each of the n partitions; computed for each distance 

  

%relCE_arb: a 1x3 vector of relative CEs at the three different probability  

%levels applicable to an arbitrary geolocation in the product; computed for  

%each distance 

  

%relLE_arb: a 1x3 vector of relative LEs at the three different probability  

%levels applicable to an arbitrary geolocation in the product; computed for  

%each distance 

  

   

%PROCESSING: 

  

%Define and compute partition predictive stats from random field predictive 

%stats: 
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mean=mean_rf; 

cov=cov_rf; 

  

for i=2:n 

mean(i,:)=mean(i,:)+mean_rf(1,:); 

cov(3*(i-1)+1:3*i,:)=cov(3*(i-1)+1:3*i,:)+cov_rf(1:3,:); 

end 

  

mean 

cov 

  

  

%compute horizontal error spatial correlation coefficient at specified  

%distances for each random field for use later to compute relative CEXXs and  

%LEXXs for partitions 

  

cor_h=zeros(n_dist,n); % defined as an (n_dist x n) matrix 

cor_v=zeros(n_dist,n); 

  

for i=1:n 

  

A=spdcf_hor_rf(i,1);%partition i’s first spdcf parameter for horizontal  

errors.  

  

%It is assumed that (0<A<1), instead of (0<A<=1), as well as the following  

%check since we’re never really interested in cor at d=0 explicitly but later  

%use d=0 for convenience instead of the desired d = positive epsilon.   

%Note: if A=1 and d=0, cor=1 and rel error covariance matrix equals zero  

%(undesirable - matrix not positive definite)  

if(A==1) 

    A=0.999; 

end 

  

alpha=spdcf_hor_rf(i,2);   %(0<=alpha<1) 

beta=spdcf_hor_rf(i,3);    %0<=beta<10 

D=spdcf_hor_rf(i,4);       %0<D in meters 

  

for j=1:n_dist 

d=dist(j);  % distance j 

cor_h(j,i)=A*(alpha+(1-alpha)*(1+beta)/(beta+exp(d/D))); %correlation  

%coefficient for distance j for partition i 

end 

  

A=spdcf_vert_rf(i,1); %partition i’s first spdcf parameter for vertical  errors; 

if(A==1) 

    A=0.999; 

end 

alpha=spdcf_vert_rf(i,2); 

beta=spdcf_vert_rf(i,3); 

D=spdcf_vert_rf(i,4); 

  

for j=1:n_dist 

d=dist(j);  % distance j 

cor_v(j,i)=A*(alpha+(1-alpha)*(1+beta)/(beta+exp(d/D)));   

end 
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end      

  

%Note that an arbitrary spdcf is defined as to equal 1 when evaluated at a  

%distance d=0,and is equal to A at a distance d=epsilon, where epsilon is an  

%arbitrary small positive number 

   

cor_h   %print output for info; values used later in this program (script); 

         %remember, rows are different distances and columns diff partitions 

cor_v   

  

  

  

%compute mean and covariance for arbitrary geolocation for information only.  

%i.e., not used in this program after its computation; also corresponds to 

%a non_gaussian distribution if number of partitions n>1: 

  

mean_arb=zeros(1,3);   % a 1x3 row vector containing mean-value of  

                        %arbitrary geolocation’s x, y, z errors 

cov_arb=zeros(3,3);   % a 3x3 covariance matrix for arbitrary geolocation’s 

                        %x, y, z errors about its mean-%value 

                         

for i=1:n 

temp=mean(i,:);   %temp is 1x3 vector of partition i’s mean-value 

mean_arb=mean_arb+part_p(1,i)*temp; 

end 

  

for i=1:n 

temp=mean(i,:) - mean_arb; %temp is a 1x3 vector of partiton i’s mean – mean_arb 

temp_cov_1=temp'*temp;  % a 3x3 matrix 

temp_cov_2=cov(3*(i-1)+1:3*i,:); % partition i’s 3x3 covariance matrix 

cov_arb=cov_arb+part_p(1,i)*(temp_cov_1+temp_cov_2); 

end 

  

mean_arb %print output partions' mean-value and covariance matrix as  

         %which correspond to recommended metadata 

cov_arb 

  

  

%Compute CEs and LEs for each partition (no plotting specified) 

  

plot_flag_temp=zeros(1,4); 

  

CE_partitions=zeros(n,3); 

LE_partitions=zeros(n,3); 

   

for i=1:n 

  

n_specific=i; 

[CE,LE]=M_Carlo_CE_LE(p_levels,n,part_p,mean,cov,n_specific, ... 

plot_flag_temp,0,0); 

  

CE_partitions(i,:)=CE; 

LE_partitions(i,:)=LE; 

  

end 
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CE_partitions   %print output of highly recommeded recommended metadata; 

LE_partitions 

  

%Save CE90 and LE90 results for possible plotting of partition 1 later 

part_1_CE90=CE_partitions(1,1); 

part_1_LE90=LE_partitions(1,1); 

  

  

%Compute CEs and LEs for arbitrary geolocation regardless the value of n; 

%also specify possible plotting of results (via plot flag), and if so  

%specified, including possible plotting of CE90 and LE90 for partition 1 for  

%comparison 

   

n_specific=0;     

  

[CE_arbitrary,LE_arbitrary]=M_Carlo_CE_LE(p_levels,n,part_p,mean,cov,... 

    n_specific,plot_flag,part_1_CE90,part_1_LE90); 

  

  

CE_arbitrary   %print output of fighly recommended metadata; remember,           

               %columns correspond to different probability levels 

  

LE_arbitrary 

  

  

%Now for relative accuracies: 

  

%In general, compute relCEs and relLEs at three different 

%probability levels at three different (n_dist) distance values, the latter  

%can be used to define the min and max for each of two different distance  

%bins; relative errors have a mean-value of zero.  No plotting performed. 

  

%First, for two geolocations associated with the same partition:  

  

%Since partitions correspond to one or the sum of two random fields, this  

%approach first solves for the relative accuracy for two errors in the  

%same random field i, i=1,..,n, and then combines these results to compute  

%the relative accuracy for partition i, i=1,..,n.  Recall that partition 1  

%contains random field 1, and that partition i>1 contains random field 1  

%and random field i. 

    

for ii=1:n_dist 

m_rel=zeros(n,3);   %the second dimension with a value of 3 corresponds to     

                    %3d geolocations 

cov_rel=zeros(3*n,3); 

relCE_partitions=zeros(n,3);  %the second dimension with a value of 3           

        %corresponds to number of different distances between geolocations 

relLE_partitions=zeros(n,3); 

  

     

for jj=1:n 

    cov_temp=cov_rf((jj-1)*3+1:jj*3,:);   %3x3 cov for rf jj 

    S=zeros(3,3); 

    S(1,1)=cor_h(ii,jj); 

    S(2,2)=cor_h(ii,jj); 

    S(3,3)=cor_v(ii,jj); 
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    rel_cov_temp=2*(cov_temp-sqrtm(cov_temp)*S*sqrtm(cov_temp)); %3x3  

                                                    %rel_cov for rf jj     

  

cov_rel((jj-1)*3+1:jj*3,:)=rel_cov_temp(:,:); %load into appropriate   

%location of rel cov for the partitions 

  

if (jj>1)   %add rel cov for partition 1 (rf 1) to rel cov for partitions %> 1 

cov_rel((jj-1)*3+1:jj*3,:)=cov_rel((jj-1)*3+1:jj*3,:)+... 

                           cov_rel(1:3,:); 

end 

    

n_specific=jj; 

[relCE,relLE]=M_Carlo_CE_LE(p_levels,n,part_p,m_rel,cov_rel,... 

        n_specific,plot_flag_temp,0,0); 

  

relCE_partitions(jj,:)=relCE; 

relLE_partitions(jj,:)=relLE; 

  

end 

         

distance=dist(1,ii) %print output for recommended metadata 

relCE_partitions 

relLE_partitions 

  

end 

  

  

%Next, do as above but for two errors associated with two arbitrary  

%geolocations in the product.  No plotting specified. 

  

%Compute the relative error covariance matrix associated with each possible  

%corresponding partition-pair (one geolocation in partition i and the other  

%in j), also compute the corresponding probability of occurrence for this  

%partition pair.  

  

%Associate each such pair with corresponding probability of occurrence to a  

%“pseudo partition” and then call M_Carlo_CE_LE to compute relCEs and relLEs  

%for two arbitrary geolocations.  

  

%The following code takes into consideration that geolocations in different  

%partitions have correlated errors due to the fact that all partitions i 

%nclude errors from random field 1, which complicates things somewhat. 

  

for ii=1:n_dist 

  

n_pseudo=n*(n+1)/2;  %number of partition pairs in n partitions 

pseudo_p=zeros(1,n_pseudo); 

rel_m=zeros(n_pseudo,3);   %mean-value of relative error associated with  

                           %partition pairs 

rel_c=zeros(3*n_pseudo,3);%covariance matrix of relative error associated with  

                          %partition pairs 

count=1; 

n_specific=0; 

  

  

%precompute the cross-covariance for two errors in random field 1: 
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cov_temp_rf1=cov_rf(1:3,:); 

S=zeros(3,3); 

    S(1,1)=cor_h(ii,1); 

    S(2,2)=cor_h(ii,1); 

    S(3,3)=cor_v(ii,1); 

    cross_cov_rf1=sqrtm(cov_temp_rf1)*S*sqrtm(cov_temp_rf1); 

     

  

for i=1:n   %loop over partitions 

for j=i:n 

     

cov_temp_1=cov((i-1)*3+1:i*3,:);   %partition i covariance 

cov_temp_2=cov((j-1)*3+1:j*3,:);   %partition j covariance 

  

cov_temp_sum=cov_temp_1+cov_temp_2; 

pseudo_p(1,count)=part_p(1,i)*part_p(1,j); 

if(j>i) 

    pseudo_p(1,count)=2*pseudo_p(1,count);%2 accounts for i-j % j-i combos 

end 

  

%if partitions i=j and not equal to 1, subtract off 2*cross-covariance for  

%rf 1 and for rf i.  If this is not the case, subtract off 2*cross-covariance  

%for rf 1. 

  

cov_temp_sum=cov_temp_sum-2*cross_cov_rf1; 

  

if(i~=1&&j~=1&&i==j) 

     

cov_temp_1=cov_rf((i-1)*3+1:i*3,:); 

  

S=zeros(3,3); 

    S(1,1)=cor_h(ii,j); 

    S(2,2)=cor_h(ii,j); 

    S(3,3)=cor_v(ii,j); 

    cross_cov_temp=sqrtm(cov_temp_1)*S*sqrtm(cov_temp_1); 

  

cov_temp_sum=cov_temp_sum-2*cross_cov_temp; 

  

end 

  

  

rel_c(3*(count-1)+1:3*count,:)=cov_temp_sum; 

count=count+1; 

  

end 

end 

  

  

 [relCE_arb,relLE_arb]=M_Carlo_CE_LE(p_levels,n_pseudo,pseudo_p,rel_m,... 

rel_c,n_specific,plot_flag_temp,0,0); 

  

distance=dist(1,ii) %print output for recommended metadata 

relCE_arb 

relLE_arb 
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end    %end ii distance loop 

  

  

%plot a (hard coded) selected partition's spdcf_vert for general info,  

%if plot_flag(1,4) is on (equals 1); only spdcf_vert and for one random field  

%is plotted for convenience; note that this is not related to the CE/LE  

%plots; the default 

  

if(plot_flag(1,1)==1 && plot_flag(1,4)==1) 

sel_part=1;    %select first random field (also applicable to partition 1) as 

%default 

numSamples=30;  %keep number of samples for plot low or plot too dense (dark)  

Z=zeros(numSamples+1,1); 

X=zeros(numSamples+1,1); 

Y=zeros(numSamples+1,1); 

A=spdcf_vert_rf(sel_part,1);%doesn’t matter if 0<A<1 instead of 0<A<=1 for 

plots 

alpha=spdcf_vert_rf(sel_part,2); 

beta=spdcf_vert_rf(sel_part,3); 

D=spdcf_vert_rf(sel_part,4); 

max_dist=1.5*D; 

for ii=1:numSamples+1 

    X(ii,1)=-max_dist+2*max_dist*(ii-1)/numSamples; 

for jj=1:numSamples+1 

    Y(jj,1)=-max_dist+2*max_dist*(jj-1)/numSamples; 

    d=sqrt(X(ii,1)^2+Y(jj,1)^2); 

    Z(ii,jj)=A*(alpha+(1-alpha)*(1+beta)/(beta+exp(d/D))); 

    if(d==0) 

        Z(ii,jj)=A; 

    end 

end 

end 

  

figure(3) 

clf 

surf(X,Y,Z); 

xlabel('delta x (m)'); 

ylabel('delta y (m)'); 

zlabel('spatial correlation coefficient'); 

title('spdcf for hor errors (ex amd ey) as a function of hor distance; selected 

part'); 

end 

  

    

  

function[CE,LE]=M_Carlo_CE_LE(p_levels,n,pp,M,C,n_specific,plot_flag,... 

    part_1_CE90,part_1_LE90) 

  

%compute CEXX and LEXX for each XX value for each partition as well as for an  

%arbitrary geolocation in the MGRF (product); also call plotting functions  

%as appropriate 

  

%INPUTS: 

  

%p_levels is a 1x3 vector containing specified probability levels for both CE  

%and LE;  
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%n is the total number of partitions in the MGRF (product).  Alternatively,   

%the total number of “pseudo partitions” if this function was called to  

%compute scalar accuracy metrics for relative accuracy; 

  

%pp is a 1xn vector of partition probabilities;  

  

%plot_flag: a 1x4 vector of plot flags for CE and LE for arbitrary geolocation;  

%if plot_flag(1,1)=1 plotting is specfied; 

%it is assumed that there is no plotting (plot_flag(1,1)=0) if this function 

%was called to compute scalar accuracy metrics for predicted relative  

%accuracy 

  

%M: n rows of partition 1x3 mean-values,i.e., M is nx3;  

  

%C: 3n rows of 1x3 columns of partition covariance matrices, i,e, C is 3nx3,  

%where the first 3 rows correspond to partition 1’s covariance matrix 

  

%n_specifc is the particular partition of interest for which CE and LE are to  

%be computed; if equal to 0, CE and LE corresponding to an arbitrary  

%geolocation in the product are to be computed instead 

  

  

%EXPLICIT OUTPUTS:  

  

%CE is a 1x3 containing the applicable CE at the 3 probability levels 

%LE is a 1x3 containing the applicable LE at the 3 probability levels 

  

  

%IMPLICIT OUTPUTS as inputs to plotting function called by this function: 

  

%h_samp_plot is a 2 x m_tot_plot array of corresponding horizontal error  

%samples for plotting; 

  

%v_samp_plot is a 1 x m_tot_plot array of corresponding vertical error  

%samples for plotting 

  

  

% PROCESSING: 

  

%m_tot_part is the total number of random samples to be used in the Monte  

%Carlo method for the computation of CE and LE for a specific partition: 

m_tot_partitions=1000000; 

  

%m_tot is the total number of random samples to be used in the Monte Carlo  

%method for the computation of CE and LE for an arbitrary geolocation: 

m_tot=10000000; 

  

%m_tot_plot is the total number of random samples to be saved for possible  

%plotting in the calling program (MATLAB script) for either a specific  

%partition of for an arbitrary geolocation: 

m_tot_plot=2000; 

%m_tot_plot=5000; % for "higher-resolution" plots - takes more bytes to place 

%into a document 

  

CE=zeros(1,3); 
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LE=zeros(1,3); 

  

  

%compute CE and LE for arbitrary geolocation (otherwise      

              %for a specific partition) 

  

arb_flag=1; 

n_appl=n; 

if(n_specific~=0) 

arb_flag=0; 

n_appl=1; 

end 

  

sum1=0;    

sum2=0;   

ns=zeros(1,n_appl); 

ns_plot=zeros(1,n_appl); 

  

%Do CE first and then LE in order to reduce internal memory requirements 

  

  

for i=1:n_appl 

       

    %assume arb_flag=1 

    m=M(i,:); 

    c=C((i-1)*3+1:i*3,:); 

    m_total=m_tot; 

     

    if(arb_flag==0) 

    m=M(n_specific,:); 

    c=C((n_specific-1)*3+1:n_specific*3,:); 

    m_total=m_tot_partitions;   %total number of samples if for a specific  

                                %partition 

    end 

     

    m_hor=m(1,1:2); 

    c_hor=c(1:2,1:2); 

    c_hor_sqrt=sqrtm(c_hor); 

  

    %assume arb_flag=1 

    ns(1,i)=floor(m_total*pp(1,i));            

    sum1=sum1+ns(1,i);            

    ns_plot(1,i)=floor(m_tot_plot*pp(1,i));            

    sum2=sum2+ns_plot(1,i); 

  

  

    if(arb_flag==0) 

    ns(1,i)=m_total; 

    sum1=ns(1,i);       

    ns_plot(1,i)=m_tot_plot; 

    sum2=ns_plot(1,i);     

    end 

     

    if(i==1)    

    Y_hor=m_hor'*ones(1,ns(1,i))+c_hor_sqrt*randn(2,ns(1,i)); 

    h_samp_plot=Y_hor(:,1:ns_plot(1,i)); 
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    end 

  

    if(i>=2)   %only occurs if arb_flag=1 

    Y_hor_temp=m_hor'*ones(1,ns(1,i))+c_hor_sqrt*randn(2,ns(1,i)); 

    Y_hor= cat(2,Y_hor,Y_hor_temp); 

    h_samp_plot=cat(2,h_samp_plot,Y_hor_temp(:,1:ns_plot(1,i))); 

    clear Y_hor_temp 

    end 

  

end 

  

m_total_floored=sum1; 

m_tot_plot_floored=sum2; 

  

mag_samples=zeros(m_total_floored,1); 

for j=1:m_total_floored   

    mag_samples(j,1)=sqrt(Y_hor(1,j)^2+Y_hor(2,j)^2);   

end 

  

sorted_mag_samples=sort(mag_samples); 

  

for k=1:3  

kk=floor(p_levels(1,k)*m_total_floored);  

CE(1,k)=(sorted_mag_samples(kk,1)); 

if((kk+1)<=m_total_floored) 

CE(1,k)=(sorted_mag_samples(kk,1)+sorted_mag_samples(kk+1,1))/2; 

end 

end 

      

clear Y_hor  

clear mag_samples 

clear sorted mag_samples 

  

%if plot flag on, plot hor error samples and CEs at the different prob 

%levels for an arbitrary geolocation 

  

if(plot_flag(1,1)==1&&arb_flag==1)     

  CE_plot(CE,n,h_samp_plot,m_tot_plot_floored,pp,plot_flag,part_1_CE90)  

end 

  

  

  

%Now do LE 

  

  

for i=1:n_appl 

     

    %assume arb_flag==1) 

    m=M(i,:); 

    c=C((i-1)*3+1:i*3,:); 

  

    if(arb_flag==0) 

    m=M(n_specific,:); 

    c=C((n_specific-1)*3+1:n_specific*3,:); 

    end      
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    m_vert=m(1,3); 

    c_vert=c(3,3); 

    c_vert_sqrt=sqrtm(c_vert); 

     

    if(i==1)    

    Y_vert=m_vert'*ones(1,ns(1,i))+c_vert_sqrt*randn(1,ns(1,i)); 

    v_samp_plot=Y_vert(:,1:ns_plot(1,i)); 

    end 

  

    if(i>=2) %only occurs if arb_flag=1 

    Y_vert_temp=m_vert'*ones(1,ns(1,i))+c_vert_sqrt*randn(1,ns(1,i)); 

    Y_vert=cat(2,Y_vert,Y_vert_temp); 

    v_samp_plot=cat(2,v_samp_plot,Y_vert_temp(:,1:ns_plot(1,i))); 

    clear Y_vert_temp 

    end 

  

end 

  

  

mag_samples=zeros(m_total_floored,1); 

for j=1:m_total_floored  

mag_samples(j,1)=sqrt(Y_vert(1,j)^2);   

end 

  

sorted_mag_samples=sort(mag_samples); 

  

for k=1:3  

kk=floor(p_levels(1,k)*m_total_floored);  

LE(1,k)=(sorted_mag_samples(kk,1)); 

if((kk+1)<=m_total_floored) 

LE(1,k)=(sorted_mag_samples(kk,1)+sorted_mag_samples(kk+1,1))/2; 

end 

end 

      

clear Y_vert 

clear mag_samples 

clear sorted mag_samples 

  

%if plot flag on, plot vert error samples and LEs 

  

if(plot_flag(1,1)==1&&arb_flag==1)     

  LE_plot(LE,n,v_samp_plot,m_tot_plot_floored,pp,plot_flag,part_1_LE90)  

end 

   

end 

  

  

  

  

  

function CE_plot(CE_levels,n,hor_samples,m_total_plot,p_partitions,... 

    plot_flag,part_1_CE90) 

  

%(1) plot circles corresponding to CE probability levels, nominally CE90  

%and CE99, for an arbitrary geolocation;  

%include CE999 if plot_flag(1,2)=1;  
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%include CE90 for partition 1 if plot_flag(1,3)=1 and number of partitions  

%n>1;all plots described here and below are in the same figure 

  

%(2) also plot horizontal error samples corresponding to the n partitions  

%(in proportion): unique colors for up to the first 3 partitions, and a  

%common color for all partitions greater than 3, when applicable 

  

%(3) note that if above is desired exclusively for geolocations in a specific  

%partition (not an arbitrary geolocation), run the script but temporarily  

%change script’s inputs such that only that partition is “active”.   

%One such method to do so is to set the entry of part_p for the desired  

%partition to 1 and the others to 0. 

  

  

figure(1) 

clf 

%plot CE circles 

r=CE_levels(1,1); 

xlimit=r; 

x1=zeros(401,1); 

y1=zeros(401,1); 

y2=zeros(401,1); 

dx=xlimit/200; 

for i=1:401 

    x1(i,1)=-xlimit+(i-1)*dx; 

    y1(i,1)=sqrt(r^2-x1(i,1)^2);     

    y2(i,1)=-y1(i,1); 

end 

hold on 

ax=1.2*CE_levels(1,3); 

if(plot_flag(1,2)~=1) 

    ax=1.2*CE_levels(1,2); 

end 

plot(x1,y1,'b',x1,y2,'b','Linewidth',2); %CE90 for arbitrry geolcation 

            %ignore any "imaginary parts ignored" warning due to finite 

            %precision 

axis([-ax ax -ax ax]); 

axis equal 

xlabel('x-error (m)'); 

ylabel('y-error (m)'); 

title('CE arb: 90%(b),99%(-.b),opt. 99.9%(--b);part samples .r,.c,.g,.m'); 

r=CE_levels(1,2); 

xlimit=r; 

x1=zeros(401,1); 

y1=zeros(401,1); 

y2=zeros(401,1); 

dx=xlimit/200; 

for i=1:401 

    x1(i,1)=-xlimit+(i-1)*dx; 

    y1(i,1)=sqrt(r^2-x1(i,1)^2);     

    y2(i,1)=-y1(i,1); 

end 

plot(x1,y1,'-.b',x1,y2,'-.b','Linewidth',2);  %CE99 for arbitrry geolocation 

  

if(plot_flag(1,2)==1) %% include CE999 (99.9%) for arbitrary geolcation 

r=CE_levels(1,3); 
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xlimit=r; 

x1=zeros(401,1); 

y1=zeros(401,1); 

y2=zeros(401,1); 

dx=xlimit/200; 

for i=1:401 

    x1(i,1)=-xlimit+(i-1)*dx; 

    y1(i,1)=sqrt(r^2-x1(i,1)^2);     

    y2(i,1)=-y1(i,1); 

end 

plot(x1,y1,'--b',x1,y2,'--b','Linewidth',2);  %CE999 for arbitrry geolocation 

end 

  

if(plot_flag(1,3)==1&&n>1)   %add CE90 for part 1 

r=part_1_CE90; 

xlimit=r; 

x1=zeros(401,1); 

y1=zeros(401,1); 

y2=zeros(401,1); 

dx=xlimit/200; 

for i=1:401 

    x1(i,1)=-xlimit+(i-1)*dx; 

    y1(i,1)=sqrt(r^2-x1(i,1)^2);     

    y2(i,1)=-y1(i,1); 

end 

plot(x1,y1,'r',x1,y2,'r','Linewidth',2); 

end 

  

%plot correct portion of partition 1 samples 

k_1=floor(p_partitions(1,1)*m_total_plot); 

x1=zeros(k_1,1); 

y1=zeros(k_1,1); 

for i=1:k_1 

    x1(i,1)=hor_samples(1,i); 

    y1(i,1)=hor_samples(2,i); 

end 

plot(x1,y1,'.r'); 

  

if(n>1)    

%plot correct portion of partition 2 samples 

k_2=floor(p_partitions(1,2)*m_total_plot); 

x1=zeros(k_2,1); 

y1=zeros(k_2,1); 

for i=1:k_2 

    x1(i,1)=hor_samples(1,i+k_1); 

    y1(i,1)=hor_samples(2,i+k_1); 

end 

plot(x1,y1,'.c'); 

end 

  

if(n>2) 

%plot correct portion of partition 3 samples  

k_3=floor(p_partitions(1,3)*m_total_plot); 

x1=zeros(k_3,1); 

y1=zeros(k_3,1); 

for i=1:k_3 
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    x1(i,1)=hor_samples(1,i+k_1+k_2); 

    y1(i,1)=hor_samples(2,i+k_1+k_2); 

end 

plot(x1,y1,'.g'); 

end 

  

if(n>3) 

%plot correct portion of partitions’ 4 to n samples together 

sum1=k_1+k_2+k_3;  %total number of samples for plotting in partitions 1-3 

sum2=0;   %initialize total number of samples for plotting in partitions  

                          %4 and up 

sum3=sum1; 

sum4=0; 

for ii=4:n 

sum2=sum2+floor(p_partitions(1,ii)*m_total_plot);  

end 

hortot=zeros(2,sum2); 

for ii=4:n 

n_plot_current=floor(p_partitions(1,ii)*m_total_plot); %total number of 

%samples for plotting for this partition 

for jj=1:n_plot_current 

hortot(1,sum4+jj)=hor_samples(1,sum3+jj); 

hortot(2,sum4+jj)=hor_samples(2,sum3+jj); 

end 

sum4=sum4+n_plot_current; 

sum3=sum3+n_plot_current; 

end 

  

x1=zeros(sum2,1); 

y1=zeros(sum2,1); 

for i=1:sum2 

    x1(i,1)=hortot(1,i); 

    y1(i,1)=hortot(2,i); 

end 

plot(x1,y1,'.m'); 

end    %end if n>3 

  

hold off     

  

  

end     %end function 

  

  

function LE_plot(LE_levels,n,vert_samples,m_total_plot,p_partitions,... 

    plot_flag,part_1_LE90) 

  

%(1) plot vertical lines corresponding to LE, nominally LE90 and LE99,  

%for an arbitrary geolocation;  

%include LE999 if plot_flag(1,2)==1;  

%include LE90 for partition 1 if plot_flag(1,3)=1 and number of partitions  

%n>1; all plots described here and below are in the same figure 

  

%(2) also plot vertical error samples corresponding to the n partitions  

%(in proportion): unique colors for up to the first 3 partitions, and a  

%common color for all partitions greater than 3, when applicable 
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%(3) note that if above is desired exclusively for geolocations in a specific  

%partition (not an arbitrary geolocation), run the script but temporarily  

%change script’s inputs such that only that partition is “active”.   

%One such method to do so is to set the entry of part_p for the desired  

%partition to 1 and the others to 0. 

  

  

figure(2) 

clf 

%plot LE horizontal lines: 

  

r=LE_levels(1,1); 

x1=zeros(401,1); 

y1=zeros(401,1); 

y2=zeros(401,1); 

for i=1:401 

x1(i,1)=-3+6*(i-1)/400; 

y1(i,1)=-r; 

y2(i,1)=r; 

end 

   

hold on 

ax=6; 

ay=1.2*LE_levels(1,3); 

if(plot_flag(1,2)~=1) 

    ay=1.2*LE_levels(1,2); 

end 

plot(x1,y1,'b',x1,y2,'b','Linewidth',2); 

axis([-ax ax -ay ay]); 

xlabel('partition vertical lines (increasing partition # order)'); 

ylabel('vert-error (m)'); 

title('LE arb: 90%(b),99%(-.b),opt. 99.9%(--b);part samples .r,.c,.g,.m'); 

  

r=LE_levels(1,2); 

for i=1:401 

x1(i,1)=-4+8*(i-1)/400; 

y1(i,1)=-r; 

y2(i,1)=r; 

end 

plot(x1,y1,'-.b',x1,y2,'-.b','Linewidth',2); 

  

if(plot_flag(1,2)==1)  

r=LE_levels(1,3); 

for i=1:401 

x1(i,1)=-5+10*(i-1)/400; 

y1(i,1)=-r; 

y2(i,1)=r; 

end 

plot(x1,y1,'--b',x1,y2,'--b','Linewidth',2); 

end 

  

if(plot_flag(1,3)==1&&n>1) 

r=part_1_LE90; 

for i=1:401 

x1(i,1)=-2+4*(i-1)/400; 

y1(i,1)=-r; 
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y2(i,1)=r; 

end 

plot(x1,y1,'r',x1,y2,'r','Linewidth',2); 

end 

  

  

%plot correct portion of partition 1 samples along a vertical line: 

  

k_1=floor(p_partitions(1,1)*m_total_plot); 

x1=zeros(k_1,1); 

y1=zeros(k_1,1); 

for i=1:k_1 

    x1(i,1)=-1; 

    y1(i,1)=vert_samples(1,i); 

end 

plot(x1,y1,'.r'); 

  

if(n>1)    

%plot correct portion of partition 2 samples 

k_2=floor(p_partitions(1,2)*m_total_plot); 

x1=zeros(k_2,1); 

y1=zeros(k_2,1); 

for i=1:k_2 

    x1(i,1)=0; 

    y1(i,1)=vert_samples(1,i+k_1); 

end 

plot(x1,y1,'.c'); 

end 

  

if(n>2) 

%plot correct portion of partition 3 samples  

k_3=floor(p_partitions(1,3)*m_total_plot); 

x1=zeros(k_3,1); 

y1=zeros(k_3,1); 

for i=1:k_3 

    x1(i,1)=1;  

    y1(i,1)=vert_samples(1,i+k_1+k_2); 

end 

plot(x1,y1,'.g'); 

end 

  

  

if(n>3) 

%plot correct portion of partitions’ 4 to n samples together 

sum1=k_1+k_2+k_3;  %total number of samples for plotting in partitions 1-3 

sum2=0;   %initialized total number of samples for plotting in partitions  

                          %4 and up 

  

for ii=4:n 

sum2=sum2+floor(p_partitions(1,ii)*m_total_plot);  

end 

vertot=zeros(2,sum2); 

sum3=sum1; 

sum4=0; 

for ii=4:n 

n_plot_current=floor(p_partitions(1,ii)*m_total_plot); %total number of  
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                                %samples for plotting for this partition 

for jj=1:n_plot_current 

vertot(1,sum4+jj)=vert_samples(1,sum3+jj); 

end 

sum4=sum4+n_plot_current; 

sum3=sum3+n_plot_current; 

end 

x1=zeros(sum2,1); 

y1=zeros(sum2,1); 

for i=1:sum2 

    x1(i,1)=2; 

    y1(i,1)=vertot(1,i); 

end 

plot(x1,y1,'.m'); 

end    %end if n>3 

  

hold off     

  

end    %end function 

 

 

 Melted Roof-top Edges, Crop/forest Anomalies, and General 

Production anomalies  

This appendix describes possible MGRF partitions other than the nominal partition – see Section 5.3.3.3 

in the main body of this document and Appendix E for further background regarding partitions. 

G.1 Melted Roof-Top Edges 

A “melted roof-top edge” and its corresponding geospatial errors are conceptually illustrated in Figure G-

1.  It can occur in an EO-derived 3d geolocation products (Point Clouds) due to a combination of effects 

associated with imaging geometry, correlation image patch size associated with conjugate image 

measurements between multiple images, general interpolation, and the abrupt change in the building 

delineation from the base of a building’s side to its roof-top.  Corresponding a priori error statistics are 

associated with an MGRF partition that is identified as corresponding to melted roof-top edges.   
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Figure G-1: 3d geolocation product’s delineation of building edge/root-top (blue) versus true delineation 

(black) and corresponding geolocation errors and statistics 

A reasonable set of these statistics includes a mean-value of zero and a standard deviation about this 

mean-value which are based on the assumption that a geolocation of interest is equally likely to 

correspond to the interior of the roof-top edge as to correspond to the exterior of the roof-top edge.  A 

higher fidelity model could correspond to two separate partitions: (1) interior melted roof-top edges with 

a negative mean-value, and (2) exterior melted roof-top edges with a positive mean-value.  However, the 

added complexity is not considered warranted for most applications of interest, although it is supported 

by the general MGRF approach if so desired.   

Further approximations associated with the baseline mean-value of zero approach include an spdcf that 

specifies positive spatial correlation between two geolocations of interest within the partition.  This 

assumes that the two geolocations are either both within an interior edge or both within an exterior edge 

which allow for the positive correlation and corresponding statistical reduction of their relative error.  This 

a reasonable assumption for most applications.  In addition, the spdcf is also usually specified such that 

the positive correlation reduces quickly as a function of distance between the two geolocations.  Another 

approximation associated with the baseline mean-value of zero approach is based on the assumption that 

the standard deviation about the mean-value of error is reasonably invariant to building height.  If higher 

fidelity error modeling is preferred for melted roof-top edges, further research is warranted. 

G.2 Crop/Forest Anomalies 

A “crop/forest anomaly” can sometimes occur in EO-derived 3d geolocation products (Point Clouds) and 

may be associated with a “crop/forest anomaly” partition in the MGRF.  It is usually associated with 
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geolocation errors that are statistically significantly larger than those corresponding to the nominal 

partition for the product; however, not as large as errors associated with a “general anomaly” partition, 

if present, which corresponds to actual generation problems.  Errors associated with crop/forest 

anomalies correspond to the effects of crop or forest “rows” (or other similar patterns) on the 

measurement of conjugate image measurements between the images used to make the product.  For 

example, an automatic correlator might select non-conjugate rows in the two images due to similarity of 

adjacent rows, a complicated function of the row pattern, height of the crop, image ground-sample 

distance, image geometry, etc., that is hard to predict analytically. 

G.3 General Production Anomalies 

A general production anomaly corresponds to a collection of 3d geolocations in a 3d geolocation product 

that had a generation problem and correspondingly very large geolocation errors and are essentially 

unsuitable for use.  For example: (1) a tower with a missing or truncated top or spire, or (2) a severe 

spike/well in an agricultural or forested region.  This does not include geolocations that are actually 

missing in the 3d geolocation product, such as voids.  However, the latter do affect the product reliability 

metric introduced in Section 5.2.1 of the main body of this document. 

 

 Alternate methods for the generation of ground truth 

As discussed in Section 5.3.5.1, ground truth is necessary for the generation of sample statistics of error 

but is not always available.    Alternate methods for its generation are presented in this appendix in 

support of the populated of accuracy assessment models and the subsequent population of predicted 

accuracy models.  Three alternate methods for the generation of ground truth are summarized in Table 

H-1, with brief descriptions following the table.  They are not “high-fidelity” methods (usually poor 

statistical significance) but may be better than no ground-truth at all, as long as their use is caveated as 

appropriate.  Additional applied research is recommended. 
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Table H-1: Alternate Methods for the Generation of Ground Truth 

 

 

(1) Alternative to explicit ground truth: Self-generation using solution residuals 

An alternate approach to obtaining ground truth suitable for data/products consisting of  

(1) Generation using solution residuals: same sensor:

        Perform WLS solution of geolocation using measurements from multiple overlapping

        realizations of data/product from same sensor and type or class of data/product of interest

                Solution beomes an estimate of ground truth

                Sample-statistiscs of solution measurement residuals becomes estimate of

               a priori  predicted error covariance of measurement (data/product) errors

(2) Generation using muluitple solutions: same data/product type:

        Perform multiple WLS solutions for the same geolocation using overlapping data/products 

        from the  same type or class of data/product of interest

                WLS Solutions typically correspodng to one specific data/product realization  

                (e.g., MIG monoscopic solution)

               Compute avereage of solutions for estimate of ground truth

              Compute corresponding solution residuals from average 

                Map geolocation residuals to measurement-space if necessary and 

                corresponding sample satistics become estimate a priori predicted error covariance

(3) Generation using muluitple solutions: different data/product types:

        Compute/extract common  geolocations from different  types or classes of

       of overlapping data/products of interest (e.g., Crowd-sourcing)

                Define "measurements" as difference in solutions from each pair of different data/products

               Perform WLS solution for predicted accuracy (error covariance matrix elements) for each 

               type or class of data/product

                       Simultaneouly perform WLS estimate of each element of each error covariance matrix 

                      corresponding to each type of class of data/preduct
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data/metadata from the same sensor, such as images from the same sensor and their metadata, which 

includes RPCs (ground-to-image rational polynomials) or estimates of sensor pose, is described as follows:  

Assuming images and their metadata for ease of description, this approach performs MIG – a weighted 

Least Squares (WLS) solution for the same geolocation’s 3d coordinates using many images that contain 

the geolocation in their footprint, if available.  The solution becomes “ground truth” and the a posteriori 

image residuals become samples of the error in this data/product expressed in image-space that can be 

used to populate a corresponding accuracy assessment model and then a Geolocation Data Predicted 

Accuracy Model: Measurement-space.  This technique is similar to “scaling by the reference variance”, 

presented in TGD 2d (Estimators and their Quality Control), and requires a large number of images, at 

least approximately 20 and preferably many more for reasonable results.  It also cannot detect a common 

bias in errors across the images/metadata if present. 

(2) Alternative to explicit ground truth: Self-generation using multiple solutions 

An alternate approach to obtaining ground truth suitable for the same type of data/products 

corresponding to similar sensors, such as images from sensors in the same Small-Sat constellation and 

their metadata that includes either RPC or estimates of sensor pose, etc., is described as follows:  

Assuming images and their metadata for ease of description, this approach performs a monoscopic MIG 

for the 3d coordinates of a common geolocation within each image’s ground footprint.  An external 

elevation source (e.g., DEM) supplies the necessary elevation information to the MIG.  Sample statistics 

consist of the difference of each solution from their average, which are then projected to image-space 

and used to populate a corresponding accuracy assessment model and then a Geolocation Data Predicted 

Accuracy Model: Measurement-space.  Again, the greater the number of images, the better the results.  

It also cannot detect a common bias in errors across the images/metadata if present. 

(3) Alternative to ground truth: Common geolocations from “competing” products  

geolocation products corresponding to Commodities data from different providers or corresponding to 

Crowd-sourcing data from different providers are compared, such as digital maps, in this alternate 

approach.  More explicitly regarding Crowd-sourcing, 3d coordinates of the same geolocation(s) contained 

or accessible in multiple digital maps with intersecting AOIs are compared, where the digital maps must 

correspond to at least three different providers or types of product.  Sample statistics of the relative 

difference of common geolocations are computed and the unique error covariance matrix applicable to 

each product (digital map) is subsequently estimated in a simultaneous Weighted Least Squares solution.  

More specifically, measurements into the WLS consist of sample error covariance matrices of the 

difference between two geolocations from different products, where the latter approximates the 3d sum 

of their 3d geolocations errors.  At least three different products are assumed in order to solve for 

(estimate) a unique predicted error covariance matrix of geolocation errors for each of the products.  Of 

course, the more products and the more sample error covariance matrices associated with each product 

the better.  A product’s predicted error covariance matrix solved via WLS is assumed representative of an 

arbitrary geolocation in product. 
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This alternative is particularly suited to Commodities data and Crowd-sourcing data with accuracy that is 

not well known, and of course, with no explicit ground truth available.  This method is also unique in that 

it doesn’t solve for geolocations explicitly as a “substitute” for ground truth, but estimates applicable error 

covariance matrices directly.  However, a common bias between all providers cannot be detected.  

Examples of digital map vendors/collectors include OpenStreetMap, Wikimapia, and Google Maps. 


